Learn More
Morfette is a modular, data-driven, probabilistic system which learns to perform joint morphological tagging and lemmatization from morphologically annotated corpora. The system is composed of two learning modules which are trained to predict morphological tags and lemmas using the Maximum Entropy classifier. The third module dynamically combines the(More)
This paper shows how finite approximations of long distance dependency (LDD) resolution can be obtained automatically for wide-coverage, robust, probabilistic Lexical-Functional Grammar (LFG) resources acquired from treebanks. We extract LFG subcategorisation frames and paths linking LDD reentrancies from f-structures generated automatically for the Penn-II(More)
This paper describes the development of QuestionBank, a corpus of 4000 parse-annotated questions for (i) use in training parsers employed in QA, and (ii) evaluation of question parsing. We present a series of experiments to investigate the effectiveness of QuestionBank as both an exclusive and supplementary training resource for a state-of-the-art parser in(More)
We investigate the problem of parsing the noisy language of social media. We evaluate four Wall-Street-Journal-trained statistical parsers (Berkeley, Brown, Malt and MST) on a new dataset containing 1,000 phrase structure trees for sentences from microblogs (tweets) and discussion forum posts. We compare the four parsers on their ability to produce Stanford(More)
We evaluate the statistical dependency parser, Malt, on a new dataset of sentences taken from tweets. We use a version of Malt which is trained on gold standard phrase structure Wall Street Journal (WSJ) trees converted to Stanford labelled dependencies. We observe a drastic drop in performance moving from our in-domain WSJ test set to the new Twitter(More)
Recent studies focussed on the question whether less-configurational languages like German are harder to parse than English, or whether the lower parsing scores are an artefact of treebank encoding schemes and data structures, as claimed by Kübler et al. (2006). This claim is based on the assumption that PARSEVAL metrics fully reflect parse quality across(More)
We present a method for evaluating the quality of Machine Translation (MT) output, using labelled dependencies produced by a Lexical-Functional Grammar (LFG) parser. Our dependency-based method, in contrast to most popular string-based evaluation metrics, does not unfairly penalize perfectly valid syntactic variations in the translation, and the addition of(More)
In this paper we present a novel method for deriving paraphrases during automatic MT evaluation using only the source and reference texts, which are necessary for the evaluation, and word and phrase alignment software. Using target language paraphrases produced through word and phrase alignment a number of alternative reference sentences are constructed(More)
The fundamental claim of this paper is that salience—both visual and linguistic—is an important overarching semantic category structuring visually situated discourse. Based on this we argue that computer systems attempting to model the evolving context of a visually situated discourse should integrate models of visual and linguistic salience within their(More)