Learn More
We describe an approach to object and scene retrieval which searches for and localizes all the occurrences of a user outlined object in a video. The object is represented by a set of viewpoint invariant region descriptors so that recognition can proceed successfully despite changes in viewpoint, illumination and partial occlusion. The temporal continuity of(More)
In this paper, we present a large-scale object retrieval system. The user supplies a query object by selecting a region of a query image, and the system returns a ranked list of images that contain the same object, retrieved from a large corpus. We demonstrate the scalability and performance of our system on a dataset of over 1 million images crawled from(More)
The state of the art in visual object retrieval from large databases is achieved by systems that are inspired by text retrieval. A key component of these approaches is that local regions of images are characterized using high-dimensional descriptors which are then mapped to ldquovisual wordsrdquo selected from a discrete vocabulary.This paper explores(More)
Abstract. While image registration has been studied in different areas of computer vision, aligning images depicting different scenes remains a challenging problem, closer to recognition than to image matching. Analogous to optical flow, where an image is aligned to its temporally adjacent frame, we propose SIFT flow, a method to align an image to its(More)
Given a query image of an object, our objective is to retrieve all instances of that object in a large (1M+) image database. We adopt the bag-of-visual-words architecture which has proven successful in achieving high precision at low recall. Unfortunately, feature detection and quantization are noisy processes and this can result in variation in the(More)
Photographs taken in low-light conditions are often blurry as a result of camera shake, i.e. a motion of the camera while its shutter is open. Most existing deblurring methods model the observed blurry image as the convolution of a sharp image with a uniform blur kernel. However, we show that blur from camera shake is in general mostly due to the 3D(More)
Given a large dataset of images, we seek to automatically determine the visually similar object and scene classes together with their image segmentation. To achieve this we combine two ideas: (i) that a set of segmented objects can be partitioned into visual object classes using topic discovery models from statistical text analysis; and (ii) that visual(More)
Convolutional neural networks (CNN) have recently shown outstanding image classification performance in the large- scale visual recognition challenge (ILSVRC2012). The success of CNNs is attributed to their ability to learn rich mid-level image representations as opposed to hand-designed low-level features used in other image classification methods.(More)
We investigate the problem of automatically labelling appearances of characters in TV or film material. This is tremendously challenging due to the huge variation in imaged appearance of each character and the weakness and ambiguity of available annotation. However, we demonstrate that high precision can be achieved by combining multiple sources of(More)
Given a set of images containing multiple object categories, we seek to discover those categories and their image locations without supervision. We achieve this using generative models from the statistical text literature: probabilistic Latent Semantic Analysis (pLSA), and Latent Dirichlet Allocation (LDA). In text analysis these are used to discover topics(More)