Josef Kiendl

Learn More
This paper builds on a recently developed immersogeometric fluid-structure interaction (FSI) methodology for bioprosthetic heart valve (BHV) modeling and simulation. It enhances the proposed framework in the areas of geometry design and constitutive modeling. With these enhancements, BHV FSI simulations may be performed with greater levels of automation,(More)
We present isogeometric shape optimization for shell structures applying sensitivity weighting and semi-analytical analysis. We use a rotation-free shell formulation and all involved geometry models, i.e., initial design, analysis model, optimization model, and final design use the same geometric basis, in particular NURBS. A sensitivity weighting scheme is(More)
We present different innovative formulations for shear deformable beams and plates exploiting the high inter-element continuity provided by NURBS basis functions. We develop isogeometric collocation methods in standard and mixed formulations as well as Galerkin methods using an alternative set of discrete variables. All methods are free of shear locking,(More)
  • 1