Josef Jampilek

Learn More
Unsubstituted, halogenated and/or alkylated pyrazine-2-carboxylic acid amides connected via -CONH- bridge with substituted anilines were synthesized using currently known synthetic pathways. The synthetic approach, analytical, spectroscopic, lipophilicity and biological data of 20 newly synthesized compounds are presented. Structure-activity relationships(More)
Various synthetic pathways of the 30 novel 2-substituted 5,7-di-tert-butylbenzoxazoles as new potential antimicrobial drugs are discussed. The 28 intermediates are described as well. The compounds were characterized by 1H and 13C NMR spectra, MS spectra, IR/UV spectra and by means of CHN analysis. The purity of the final compounds was checked by HPLC and(More)
The series of quinoline derivatives were prepared. The synthetic approach, analytical, and spectroscopic data of all synthesized compounds are presented. All the prepared derivatives were analyzed using the reversed-phase high performance liquid chromatography (RP-HPLC) method for the lipophilicity measurement. In the present study, the correlation between(More)
A new series of 30 N-protected amino acid esters were prepared as a part of ongoing search for new anti-tuberculosis active salicylanilides. The esters possess high in vitro activity against Mycobacterium tuberculosis, Mycobacterium avium, and two strains of Mycobacterium kansasii, where one is an isolate from the patient, with MIC in the range 1-32(More)
A series of novel and highly active acetylcholinesterase and butyrylcholinesterase inhibitors derived from substituted benzothiazoles containing an imidazolidine-2,4,5-trione moiety were synthesized and characterized. The molecular structure of 1-(2,6-diisopropyl-phenyl)-3-[(1R)-1-(6-fluoro-1,3-benzothiazol-2-yl)ethyl]-imidazolidine-2,4,5-trione (3g) was(More)
A series of twenty-five novel salicylanilide N-alkylcarbamates were investigated as potential acetylcholinesterase inhibitors. The compounds were tested for their ability to inhibit acetylcholinesterase (AChE) from electric eel (Electrophorus electricus L.). Experimental lipophilicity was determined, and the structure-activity relationships are discussed.(More)
The blood-brain barrier prevents the passage of many drugs that target the central nervous system. This paper presents the preparation and characterization of silica-based nanocarriers loaded with piracetam, pentoxifylline, and pyridoxine (drugs from the class of nootropics), which are designed to enhance the permeation of the drugs from the circulatory(More)
The absorption, distribution, biotransformation and excretion of a drug involve its transport across cell membranes. This process is essential and influenced by the characteristics of the drug, especially its molecular size and shape, solubility at the site of its absorption, relative lipid solubility, etc. One of the progressive ways for increasing(More)
The connection of two active molecules across an easily released bridge as a new type of potentially active molecule has been studied. The synthesis is based on derivatives that originate from isonicotinoyl hydrazide, pyrazinamide, p-aminosalicylic acid (PAS), ethambutol, and ciprofloxacin. The lipophilicity, hydrolysis (stability of the compounds), and(More)
A series of novel, highly antimicrobial salicylanilide esters of N-protected amino acids were synthesized and characterized. Their in vitro antimicrobial activity against eight fungal strains and Mycobacterium tuberculosis was determined. The compounds had the highest level of activity against Aspergillus fumigatus, Absidia corymbifera and Trichophyton(More)