Learn More
BACKGROUND Opioids are the most widely used analgesics for the treatment of clinical pain. They produce their therapeutic effects by binding to mu-opioid receptors (MORs), which are 7 transmembrane domain (7TM) G-protein-coupled receptors (GPCRs), and inhibiting cellular activity. However, the analgesic efficacy of opioids is compromised by side-effects(More)
The mu-opioid receptor (OPRM1) is the principal receptor target for both endogenous and exogenous opioid analgesics. There are substantial individual differences in human responses to painful stimuli and to opiate drugs that are attributed to genetic variations in OPRM1. In searching for new functional variants, we employed comparative genome analysis and(More)
SUMMARY Opioids that stimulate the m-opioid receptor (MOR1) are the most frequently prescribed and effective analgesics. Here we present a structural model of MOR1. Molecular dynamics simulations show a ligand-dependent increase in the conformational flexibility of the third intracellular loop that couples with the G protein complex. These simulations(More)
The μ-opioid receptor (MOR) is the primary target for opioid analgesics. MOR induces analgesia through the inhibition of second messenger pathways and the modulation of ion channels activity. Nevertheless, cellular excitation has also been demonstrated, and proposed to mediate reduction of therapeutic efficacy and opioid-induced hyperalgesia upon prolonged(More)
Subject recruitment. One hundred ninety six (196) healthy European American pain-free females with an age range of 18 to 34 years were genotyped and phenotyped. Demographic characteristics of the cohort at the time of recruitment have been previously described (1-3). This study was nested within a larger prospective study conducted at the University of(More)
The pharmacological effect of opioids originates, at the cellular level, by their interaction with the μ-opioid receptor (mOR) resulting in the regulation of voltage-gated Ca2+ channels and inwardly rectifying K+ channels that ultimately modulate the synaptic transmission. Recently, an alternative six trans-membrane helix isoform of mOR, (6TM-mOR) has been(More)
UNLABELLED Recent efforts have suggested that the β-adrenergic receptor (β-AR) system may be a novel and viable therapeutic target for pain reduction; however, most of the work to date has focused on the β(2)-adrenergic receptor (AR). Here, we compared the antinociceptive effects of enantiomeric configurations of propranolol and bupranolol, two structurally(More)
  • 1