Learn More
Reverse transcription quantitative real-time polymerase chain reaction is the most accurate measure of gene expression in biological systems. The data are analyzed through a process called normalization. Internal standards are essential for determining the relative gene expression in different samples. For this purpose, reference genes are selected based on(More)
Real-time PCR has become the method of choice for accurate and in-depth expression studies of candidate genes. To avoid bias, real-time PCR is referred to one or several internal control genes that should not fluctuate among treatments. A need for reference genes in the parasitic plant Orobanche ramosa has emerged, and the studies in this area have not yet(More)
The control of gene expression is a crucial regulatory mechanism in carotenoid accumulation of fruits and flowers. We investigated the role of transcriptional regulation of nine genes involved in the carotenoid biosynthesis pathway in three varieties of Cucurbita pepo with evident differences in fruit color. The transcriptional levels of the key genes(More)
Reverse transcription-quantitative real-time polymerase chain reaction (RT-qPCR) is probably the most common molecular technique used in transcriptome analyses today. The simplicity of the technology and associated protocols that generate results without the need to understand the underlying principles has made RT-qPCR the method of choice for RNA(More)
The zucchini (Cucurbita pepo) is an important food crop, the transcriptomics of which are a fundamental tool to accelerate the development of new varieties by breeders. However, the suitability of reference genes for data normalization in zucchini has not yet been studied. The aim of this study was to assess the suitability of 13 genes for their potential(More)
The cultivation of Hedysarum coronarium has generated interest recently for its high yield as a fodder crop, its high protein content, and the presence of condensed tannins in its leaf and stem tissues. Gene expression studies can lead to a better understanding of the biological processes of live organisms. Specifically, reverse transcription followed by(More)
Normalisation to a reference gene is the most common method of internally controlling for error in quantitative PCR (qPCR) experiments. Studies based on qPCR in chickpea have been carried out using potential reference genes exclusively. Inappropriate normalisation may result in the acquisition of biologically irrelevant data. We have tested the expression(More)
The infection of Medicago truncatula Gaertn. roots with the obligate parasite Orobanche crenata Forsk. is a useful model for studying the molecular events involved in the legumes-parasite interaction. In order to gain insight into the identification of gene-regulatory elements involved in the resistance mechanism, the temporal expression pattern of ten(More)
Determination of RNA quality is a critical first step in obtaining meaningful gene expression data. The PCR-based 3':5' assay is an RNA quality assessment tool. This assay is a simple, fast, and low-cost method of selecting samples for further analysis. However, its practical applications are unexploited primarily because of the absence of an experimental(More)