Jose Maria Ferrero

Learn More
Heart failure constitutes a major public health problem worldwide. The electrophysiological remodeling of failing hearts sets the stage for malignant arrhythmias, in which the role of the late Na(+) current (I(NaL)) is relevant and is currently under investigation. In this study we examined the role of I(NaL) in the electrophysiological phenotype of(More)
The long-term prognostic value of tumoural MDR1 and MRP, along with p53 and other classical parameters, was analysed on 85 node-positive breast cancer patients receiving anthracycline-based adjuvant therapy. All patients underwent tumour resection plus irradiation and adjuvant chemotherapy (the majority receiving fluorouracil-epirubicin-cyclophosphamide).(More)
BACKGROUND Heart failure is a final common pathway or descriptor for various cardiac pathologies. It is associated with sudden cardiac death, which is frequently caused by ventricular arrhythmias. Electrophysiological remodeling, intercellular uncoupling, fibrosis and autonomic imbalance have been identified as major arrhythmogenic factors in heart failure(More)
The use of antiarrhythmic drugs is common to treat heart rhythm disorders. Computational modeling and simulation are promising tools that could be used to investigate the effects of specific drugs on cardiac electrophysiology. In this paper, we study the multiscale effects of dofetilide, a drug that blocks IKr, from cellular to organ level paying special(More)
In this study, we have used computer simulations to study the mechanisms of extracellular K+ accumulation during acute ischemia. A modified version of the Luo-Rudy phase II action potential model was used to simulate the electrical behavior of one ventricular myocyte during 14 min of simulated ischemia. Our results show the following: 1) only the integrated(More)
Dofetilide is a class-III drug that inhibits the rapid component of the delayed potassium current ( I(Kr)). Experimental studies have shown that the different layers of ventricular muscle present differences in action potential duration (APD) and different responses to class III agents. It has been suggested that it contributes to APD heterogeneity in the(More)
Simulation of action potential propagation on cardiac tissues represents both a computational and memory intensive task. The use of detailed ionic cellular models, combined with its application into three-dimensional geometries turn simulation into a problem only affordable, in reasonable time, with High Performance Computing techniques. This paper presents(More)
This paper combines high-performance computing and grid computing technologies to accelerate multiple executions of a biomedical application that simulates the action potential propagation on cardiac tissues. First, a parallelization strategy was employed to accelerate the execution of simulations on a cluster of personal computers (PCs). Then, grid(More)
Advanced ovarian carcinoma in early progression (<6 months) (AOCEP) is considered resistant to most cytotoxic drugs. Gemcitabine (GE) and oxaliplatin (OXA) have shown single-agent activity in relapsed ovarian cancer. Their combination was tested in patients with AOCEP in phase II study. Fifty patients pre-treated with platinum-taxane received q3w(More)