Jose Manuel Mejía Muñoz

Learn More
In this paper, we address the problem of denoising reconstructed small animal positron emission tomography (PET) images, based on a multiresolution approach which can be implemented with any transform such as contourlet, shearlet, curvelet, and wavelet. The PET images are analyzed and processed in the transform domain by modeling each subband as a set of(More)
This paper introduces a novel algorithm that combines the Non-Subsampled Contourlet Transform (NSCT) and morphological operators to reduce the multiplicative noise of synthetic aperture radar images. The image corrupted by multiplicative noise is preprocessed and decomposed into several scales and directions using the NSCT. Then, the contours and uniform(More)
  • 1