Jose L. Martínez

Learn More
It has been widely assumed that the ecological function of antibiotics in nature is fighting against competitors. This made them a good example of the Darwinian struggle-for-life in the microbial world. Based on this idea, it also has been believed that antibiotics, even at subinhibitory concentrations, reduce virulence of bacterial pathogens. Herein, using(More)
Antibiotics are among the most successful drugs used for human therapy. However, since they can challenge microbial populations, they must be considered as important pollutants as well. Besides being used for human therapy, antibiotics are extensively used for animal farming and for agricultural purposes. Residues from human environments and from farms may(More)
The karyotype of the rainbow trout is characterized by a primitive XX/XY sex-determining chromosomal system. (Thorgaard et al., 1977). In the present study using FISH we have physically linked the 5S rRNA genes to the partially undifferentiated X chromosome pair. PCR amplified 5S rDNA was used for FISH and hybridization signals indicated that the genes were(More)
Seventy-eight isolates of different Enterococcus species (E. faecalis, n = 27; E. faecium, n = 23; E. durans, n = 8; E. avium, n = 6; E. hirae, n = 9; E. gallinarum, n = 3; and E. casseliflavus, n = 2) with a variety of erythromycin resistance phenotypes were examined for the presence of macrolide resistance genes (ermA, ermB, ermC, ermTR, mefA/E, and(More)
Antibiotic resistance can be achieved by horizontal acquisition of resistance genes (carried by plasmids or transposons), by recombination of foreign DNA into the chromosome, or by mutations in different chromosomal loci (15). In studies of molecular evolutionary biology, the term mutation rate is applied to estimations of the rate (per generation) of(More)
Stenotrophomonas maltophilia is a nosocomial bacterial pathogen intrinsically resistant to several antibiotics. The mechanisms involved in this intrinsic multiresistance phenotype are poorly understood. A library of chromosomal DNA from a spontaneous multidrug-resistant S. maltophilia D457R mutant (A. Alonso and J. L. Martinez, Antimicrob. Agents Chemother.(More)
Antibiotic resistance is one of the few examples of evolution that can be addressed experimentally. The present review analyses this resistance, focusing on the networks that regulate its acquisition and its effect on bacterial physiology. It is widely accepted that antibiotics and antibiotic resistance genes play fundamental ecological roles - as weapons(More)
Multidrug efflux pumps have emerged as relevant elements in the intrinsic and acquired antibiotic resistance of bacterial pathogens. In contrast with other antibiotic resistance genes that have been obtained by virulent bacteria through horizontal gene transfer, genes coding for multidrug efflux pumps are present in the chromosomes of all living organisms.(More)