Learn More
A recently developed method to rapidly quantify the elemental composition of bulk organic aerosols (OA) using a high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) is improved and applied to ambient measurements. Atomic oxygen-to-carbon (O/C) ratios characterize the oxidation state of OA, and O/C from ambient urban OA ranges from 0.2 to(More)
A new technique has been developed to deconvolve and quantify the mass concentrations of hydrocarbon-like and oxygenated organic aerosols (HOA and OOA) using highly time-resolved organic mass spectra obtained with an Aerodyne Aerosol Mass Spectrometer (AMS). This technique involves a series of multivariate linear regressions that use mass-to-charge ratios(More)
The development of a new high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) is reported. The high-resolution capabilities of this instrument allow the direct separation of most ions from inorganic and organic species at the same nominal m/z, the quantification of several types of organic fragments (CxHy, CxHyOz, CxHyNp, CxHyOzNp), and the(More)
Different on-line submicron particle sizing techniques report different " equivalent diameters. " For example, differential mobility analyzers (DMAs) report electrical mobility diameter (d m), while a number of recently developed instruments (such as the Aero-dyne aerosol mass spectrometer, or AMS) measure vacuum aerodynamic diameter (d va). Particle(More)
A recently developed algorithm (Zhang et al., 2005) has been applied to deconvolve the mass spectra of organic aerosols acquired with the Aerosol Mass Spectrometer (AMS) in Pittsburgh during September 2002. The results are used here to characterize the mass concentrations, size distributions, and mass spectra of hydrocarbon-like and oxygenated organic(More)
The application of mass spectrometric techniques to the real-time measurement and characterization of aerosols represents a significant advance in the field of atmospheric science. This review focuses on the aerosol mass spectrometer (AMS), an instrument designed and developed at Aerodyne Research, Inc. (ARI) that is the most widely used thermal(More)
[1] The Aerodyne Aerosol Mass Spectrometer (AMS) has been designed to measure size-resolved mass distributions and total mass loadings of volatile and semivolatile chemical species in/on submicron particles. This paper describes the application of this instrument to ambient aerosol sampling. The AMS uses an aerodynamic lens to focus the particles into a(More)
Submicron aerosol was analyzed during the MI-LAGRO field campaign in March 2006 at the T0 urban super-site in Mexico City with a High-Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS) and complementary instrumentation. Mass concentrations, diurnal cycles , and size distributions of inorganic and organic species are similar to results from the(More)
The Aerodyne aerosol mass spectrometer (AMS) was used to characterize physical and chemical properties of secondary organic aerosol (SOA) formed during ozonolysis of cycloalkenes and biogenic hydrocarbons and photo-oxidation of m-xylene. Comparison of mass and volume distributions from the AMS and differential mobility analyzers yielded estimates of(More)
[1] The aerosol mass spectrometer (AMS), manufactured by Aerodyne Research, Inc., has been shown to be capable of delivering quantitative information on the chemical composition and size of volatile and semivolatile fine airborne particulate matter with high time resolution. Analytical and software tools for interpreting the data from this instrument and(More)