Jose H. Blanchet

Learn More
Consider a sequence (Xk : k ≥ 0) of regularly varying independent and identically distributed random variables with mean 0 and finite variance. We develop efficient rare-event simulation methodology associated with large deviation probabilities for the random walk (Sn : n ≥ 0). Our techniques are illustrated by examples, including large deviations for the(More)
We consider the problem of efficient estimation of tail probabilities of sums of correlated lognormals via simulation. This problem is motivated by the tail analysis of portfolios of assets driven by correlated Black-Scholes models. We propose two estimators that can be rigorously shown to be efficient as the tail probability of interest decreases to zero.(More)
We develop rare-event simulation methodology for the analysis of loss events in a manyserver loss system under quality-driven regime, focusing on the steady-state loss probability (i.e. fraction of lost customers over arrivals) and the behavior of the whole system leading to loss events. The analysis of these events requires working with the full(More)
The asymptotic robustness of estimators as a function of a rarity parameter, in the context of rare-event simulation, is often qualified by properties such as bounded relative error (BRE) and logarithmic efficiency (LE), also called asymptotic optimality. However, these properties do not suffice to ensure that moments of order higher than one are well(More)
A binary contingency table is an m×n array of binary entries with row sums r = (r1, . . . , rm) and column sums c = (c1, . . . , cn). The configuration model generates a contingency table by considering ri tokens of type 1 for each row i and cj tokens of type 2 for each column j, and then taking a uniformly random pairing between type-1 and type-2 tokens.(More)
This paper develops the first class of algorithms that enable unbiased estimation of steady-state expectations for multidimensional reflected Brownian motion. In order to explain our ideas, we first consider the case of compound Poisson (possibly Markov modulated) input. In this case, we analyze the complexity of our procedure as the dimension of the(More)
Our focus is on efficient estimation of tail probabilities of sums of correlated lognormals. This problem is motivated by the tail analysis of portfolios of assets driven by correlated Black-Scholes models. We propose three different procedures that can be rigorously shown to be asymptotically optimal as the tail probability of interest decreases to zero.(More)
The contribution of this paper is to introduce change of measure based techniques for the rare-event analysis of heavy-tailed stochastic processes. Our changes-of-measure are parameterized by a family of distributions admitting a mixture form. We exploit our methodology to achieve two types of results. First, we construct Monte Carlo estimators that are(More)