Jose Antonio Vazquez-Boland

Learn More
Listeria monocytogenes is a food-borne pathogen with a high mortality rate that has also emerged as a paradigm for intracellular parasitism. We present and compare the genome sequences of L. monocytogenes (2,944,528 base pairs) and a nonpathogenic species, L. innocua (3,011,209 base pairs). We found a large number of predicted genes encoding surface and(More)
The gram-positive bacterium Listeria monocytogenes is the causative agent of listeriosis, a highly fatal opportunistic foodborne infection. Pregnant women, neonates, the elderly, and debilitated or immunocompromised patients in general are predominantly affected, although the disease can also develop in normal individuals. Clinical manifestations of(More)
Virulence genes in Listeria monocytogenes are coordinately expressed under the control of the transcriptional activator PrfA, encoded by prfA, a member of the cyclic AMP (cAMP) receptor protein (CRP)/FNR family of bacterial regulators. Strain P14-A is a spontaneous mutant of L. monocytogenes serovar 4b which produces elevated levels of virulence factors (M.(More)
PrfA is the major regulator of Listeria virulence gene expression. This protein is a member of the Crp/Fnr family of transcription regulators. To gain a deeper understanding of the PrfA regulon, we constructed a whole-genome array based on the complete genome sequence of Listeria monocytogenes strain EGDe and evaluated the expression profiles of the(More)
We report the genome of the facultative intracellular parasite Rhodococcus equi, the only animal pathogen within the biotechnologically important actinobacterial genus Rhodococcus. The 5.0-Mb R. equi 103S genome is significantly smaller than those of environmental rhodococci. This is due to genome expansion in nonpathogenic species, via a linear gain of(More)
The virulence mechanisms of the facultative intracellular parasite Rhodococcus equi remain largely unknown. Among the candidate virulence factors of this pathogenic actinomycete is a secreted cholesterol oxidase, a putative membrane-damaging toxin. We identified and characterized the gene encoding this enzyme, the choE monocistron. Its protein product,(More)
The PrfA protein, a member of the Crp/Cap-Fnr family of bacterial transcription factors, controls the expression of key virulence determinants of the facultative intracellular pathogen Listeria monocytogenes. Each of the steps of the listerial intracellular infection cycle-host cell invasion, phagosomal escape, cytosolic replication, and direct cell-to-cell(More)
The beta-glucoside cellobiose has been reported to specifically repress the PrfA-dependent virulence genes hly and plcA in Listeria monocytogenes NCTC 7973. This led to the hypothesis that beta-glucosides, sugars of plant origin, may act as signal molecules, preventing the expression of virulence genes if L. monocytogenes is living in its natural habitat(More)
As in other bacterial pathogens, the virulence determinants of Listeria species are clustered in genomic islands scattered along the chromosome. This review summarizes current knowledge about the structure, distribution and role in pathogenesis of Listeria virulence loci. Hypotheses about the mode of acquisition and evolution of these loci in this group of(More)
Most Listeria monocytogenes virulence genes are positively regulated by the PrfA protein, a transcription factor sharing sequence similarities with cyclic AMP (cAMP) receptor protein (CRP). Its coding gene, prfA, is regulated by PrfA itself via an autoregulatory loop mediated by the upstream PrfA-dependent plcA promoter. We have recently characterized prfA*(More)