Learn More
The Rho guanosine triphosphatases (GTPases) Rac1 and Rac2 are critical signaling regulators in mammalian cells. The deletion of both Rac1 and Rac2 murine alleles leads to a massive egress of hematopoietic stem/progenitor cells (HSC/Ps) into the blood from the marrow, whereas Rac1-/- but not Rac2-/- HSC/Ps fail to engraft in the bone marrow of irradiated(More)
Rho family GTPases are intracellular signaling proteins regulating multiple pathways involved in cell actomyosin organization, adhesion, and proliferation. Our knowledge of their cellular functions comes mostly from previous biochemical studies that used mutant overexpression approaches in various clonal cell lines. Recent progress in understanding Rho(More)
Neurofibromatosis type 1 (Nf1) mutation predisposes to benign peripheral nerve (glial) tumors called neurofibromas. The point(s) in development when Nf1 loss promotes neurofibroma formation are unknown. We show that inactivation of Nf1 in the glial lineage in vitro at embryonic day 12.5 + 1, but not earlier (neural crest) or later (mature Schwann cell),(More)
The characterization and targeting of Philadelphia chromosome positive (Ph(+)) acute lymphoblastic leukemia (ALL)-initiating cells remains unresolved. Expression of the polycomb protein Bmi1 is up-regulated in patients with advanced stages of chronic myelogenous leukemia (CML). We report that Bmi1 transforms and reprograms CML B-lymphoid progenitors into(More)
To understand the role of cytoskeleton and membrane signaling molecules in erythroblast enucleation, we developed a novel analysis protocol of multiparameter high-speed cell imaging in flow. This protocol enabled us to observe F-actin and phosphorylated myosin regulatory light chain (pMRLC) assembled into a contractile actomyosin ring (CAR) between nascent(More)
mTOR integrates signals from nutrients and growth factors to control protein synthesis, cell growth, and survival. Although mTOR has been established as a therapeutic target in hematologic malignancies, its physiological role in regulating hematopoiesis remains unclear. Here we show that conditional gene targeting of mTOR causes bone marrow failure and(More)
BACKGROUND Whole blood (WB) must be refrigerated within 8 hours to optimize Factor VIII: C yield, but chilled platelets (PLTs) are rapidly removed from circulation and cannot be used clinically. It is logistically preferable to hold WB overnight at room temperature for next-day processing. We compared in vitro quality of PLT-rich plasma (PRP)-derived PLT(More)
The molecular events that regulate engraftment and mobilization of hematopoietic stem cells and progenitors (HSC/Ps) are still incompletely defined. We have examined the role of the Rho GTPases Rac1 and Rac2 in HSC engraftment and mobilization. Rac1, but not the hematopoietic-specific Rac2, is required for the engraftment phase of hematopoietic(More)
Faithful modeling of mixed-lineage leukemia in murine cells has been difficult to achieve. We show that expression of MLL-AF9 in human CD34+ cells induces acute myeloid, lymphoid, or mixed-lineage leukemia in immunodeficient mice. Some leukemia stem cells (LSC) were multipotent and could be lineage directed by altering either the growth factors or the(More)
Rac GTPases have been implicated in the regulation of diverse functions in various blood cell lineages, but their role in T-cell development is not well understood. We have carried out conditional gene targeting to achieve hematopoietic stem cell (HSC)- or T-cell lineage-specific deletion of Rac1 or Rac1/Rac2 by crossbreeding the Mx-Cre or Lck-Cre(More)