Jos L. V. Broers

Learn More
It has been demonstrated that nuclear lamins are important proteins in maintaining cellular as well as nuclear integrity, and in maintaining chromatin organization in the nucleus. Moreover, there is growing evidence that lamins play a prominent role in transcriptional control. The family of laminopathies is a fast-growing group of diseases caused by(More)
Physical interactions between lamins and emerin were investigated by co-immunoprecipitation of in vitro translated proteins. Emerin interacted with in vitro translated lamins A, B1 and C in co-immunprecipitation reactions. Competition reactions revealed a clear preference for interactions between emerin and lamin C. Structural associations between lamins(More)
Emerin is a type II inner nuclear membrane (INM) protein of unknown function. Emerin function is likely to be important because, when it is mutated, emerin promotes both skeletal muscle and heart defects. Here we show that one function of Emerin is to regulate the flux of beta-catenin, an important transcription coactivator, into the nucleus. Emerin(More)
Laminopathies comprise a group of inherited diseases with variable clinical phenotypes, caused by mutations in the lamin A/C gene (LMNA). A prominent feature in several of these diseases is muscle wasting, as seen in Emery-Dreifuss muscle dystrophy, dilated cardiomyopathy and limb-girdle muscular dystrophy. Although the mechanisms underlying this phenotype(More)
 A selection of normal human tissues was investigated for the presence of lamins B1, B2, and A-type lamins, using a panel of antibodies specific for the individual lamin subtypes. By use of immunoprecipitation and two-dimensional immunoblotting techniques we demonstrated that these antibodies do not cross-react with other lamin subtypes and that a range of(More)
The expression of cytokeratins (CKs) in human lung cancer was studied using chain-specific monoclonal antibodies to CKs 4, 7, 8, 10, 13, 18, and 19. When applied to adenocarcinomas (ACs) of the lung, high levels of CKs 7, 8, 18, and 19 were detected in all tumors, while CK 4 was found in high concentrations in some ACs. CK 10 and 13 were completely absent,(More)
The envelope that encapsulates the cell nucleus has recently gained considerable interest, as several clinical syndromes are linked to mutations in its molecular components. Most disorders recognized so far are caused by defects in the nuclear lamins, building blocks of a filamentous network lining the nucleoplasmic side of the inner nuclear membrane.(More)
Diseases caused by mutations in lamins A and C (laminopathies) suggest a crucial role for A-type lamins in different cellular processes. Laminopathies mostly affect tissues of mesenchymal origin. As transforming growth factor-beta1 (TGF-beta1) signalling impinges on the retinoblastoma protein (pRB) and SMADs, we tested the hypothesis that lamins modulate(More)
Expression of the A-type lamins was studied in the lung adenocarcinoma cell line GLC-A1. A-type lamins, consisting of lamin A and C, are two products arising from the same gene by alternative splicing. Northern blotting showed in GLC-A1 a relatively low expression level of lamin C and an even lower expression level of lamin A as compared to other(More)
LMNA-associated progeroid syndromes have been reported with both recessive and dominant inheritance. We report a 2-year-old boy with an apparently typical Hutchinson-Gilford progeria syndrome (HGPS) due to compound heterozygous missense mutations (p.T528M and p.M540T) in LMNA. Both mutations affect a conserved region within the C-terminal globular domain of(More)