Jos E Boschker

  • Citations Per Year
Learn More
GeTe-Sb2Te3 superlattices are nanostructured phase-change materials which are under intense investigation for non-volatile memory applications. They show superior properties compared to their bulk counterparts and significant efforts exist to explain the atomistic nature of their functionality. The present work sheds new light on the interface formation(More)
Photoelectron spectroscopy in combination with piezoforce microscopy reveals that the helicity of Rashba bands is coupled to the nonvolatile ferroelectric polarization of GeTe(111). A novel surface Rashba band is found and fingerprints of a bulk Rashba band are identified by comparison with density functional theory calculations.
Phase Change Materials (PCMs) are unique compounds employed in non-volatile random access memory thanks to the rapid and reversible transformation between the amorphous and crystalline state that display large differences in electrical and optical properties. In addition to the amorphous-to-crystalline transition, experimental results on polycrystalline(More)
Sb2Te3 films are used for studying the epitaxial registry between two-dimensionally bonded (2D) materials and three-dimensional bonded (3D) substrates. In contrast to the growth of 3D materials, it is found that the formation of coincidence lattices between Sb2Te3 and Si(111) depends on the geometry and dangling bonds of the reconstructed substrate surface.(More)
Phase-change materials based on GeSbTe show unique switchable optoelectronic properties and are an important contender for next-generation non-volatile memories. Moreover, they recently received considerable scientific interest, because it is found that a vacancy ordering process is responsible for both an electronic metal-insulator transition and a(More)
A combination of far-infrared and Raman spectroscopy is employed to investigate vibrational modes and the carrier behavior in amorphous and crystalline ordered GeTe-Sb2Te3 alloys (GST) epitaxially grown on Si(111). The infrared active GST mode is not observed in the Raman spectra and vice versa, indication of the fact that inversion symmetry is preserved in(More)
The technologically important exchange coupling in antiferromagnetic/ferromagnetic bilayers is investigated for embedded nanostructures defined in a LaFeO(3)/La(0.7)Sr(0.3)MnO(3) bilayer. Exploiting the element specificity of soft X-ray spectromicroscopy, we selectively probe the magnetic order in the two layers. A transition from perpendicular to parallel(More)
J. E. Boschker,1 C. Folkman,2 C. W. Bark,2 Å. F. Monsen,3 E. Folven,1 J. K. Grepstad,1 E. Wahlström,3 C. B. Eom,2 and T. Tybell1,* 1Department of Electronics and Telecommunications, Norwegian University of Science and Technology, 7491 Trondheim, Norway 2Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA(More)
This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the(More)
The present work displays a route to design strain gradients at the interface between substrate and van der Waals bonded materials. The latter are expected to grow decoupled from the substrates and fully relaxed and thus, by definition, incompatible with conventional strain engineering. By the usage of passivated vicinal surfaces we are able to insert(More)