Joséphine Abi-Ghanem

Learn More
Targeted genome engineering has become an important research area for diverse disciplines, with site-specific recombinases (SSRs) being among the most popular genome engineering tools. Their ability to trigger excision, integration, inversion and translocation has made SSRs an invaluable tool to manipulate DNA in vitro and in vivo. However, sophisticated(More)
Site-specific recombinases (SSRs) can perform DNA rearrangements, including deletions, inversions and translocations when their naive target sequences are placed strategically into the genome of an organism. Hence, in order to employ SSRs in heterologous hosts, their target sites have to be introduced into the genome of an organism before the enzyme can be(More)
DNase I requires Ca²+ and Mg²+ for hydrolyzing double-stranded DNA. However, the number and the location of DNase I ion-binding sites remain unclear, as well as the role of these counter-ions. Using molecular dynamics simulations, we show that bovine pancreatic (bp) DNase I contains four ion-binding pockets. Two of them strongly bind Ca²+ while the other(More)
For B-DNA, the strong linear correlation observed by nuclear magnetic resonance (NMR) between the (31)P chemical shifts (deltaP) and three recurrent internucleotide distances demonstrates the tight coupling between phosphate motions and helicoidal parameters. It allows to translate deltaP into distance restraints directly exploitable in structural(More)
The Cre/loxP system is widely used as a genetic tool to manipulate DNA. Cre recombinase catalyzes site-specific recombination between 34 bp loxP sites. Each loxP site is recognized by two Cre molecules assuming a cleaving (CreC) and non-cleaving (CreNC) activity. Despite the symmetry in the sequences of the arms of loxP, available biochemical data show(More)
Current drugs against HIV can suppress the progression to AIDS but cannot clear the patient from the virus. Because of potential side effects of these drugs and the possible development of drug resistance, finding a cure for HIV infection remains a high priority of HIV/AIDS research. We recently generated a recombinase (termed Tre) tailored to efficiently(More)
  • 1