Learn More
Magnetic Resonance (MR) images are affected by random noise which limits the accuracy of any quantitative measurements from the data. In the present work, a recently proposed filter for random noise removal is analyzed and adapted to reduce this noise in MR magnitude images. This parametric filter, named Non-Local Means (NLM), is highly dependent on the(More)
Quantitative magnetic resonance analysis often requires accurate, robust, and reliable automatic extraction of anatomical structures. Recently, template-warping methods incorporating a label fusion strategy have demonstrated high accuracy in segmenting cerebral structures. In this study, we propose a novel patch-based method using expert manual(More)
PURPOSE To adapt the so-called nonlocal means filter to deal with magnetic resonance (MR) images with spatially varying noise levels (for both Gaussian and Rician distributed noise). MATERIALS AND METHODS Most filtering techniques assume an equal noise distribution across the image. When this assumption is not met, the resulting filtering becomes(More)
This paper proposes two new methods for the three-dimensional denoising of magnetic resonance images that exploit the sparseness and self-similarity properties of the images. The proposed methods are based on a three-dimensional moving-window discrete cosine transform hard thresholding and a three-dimensional rotationally invariant version of the well-known(More)
In Magnetic Resonance Imaging, image resolution is limited by several factors such as hardware or time constraints. In many cases, the acquired images have to be upsampled to match a specific resolution. In such cases, image interpolation techniques have been traditionally applied. However, traditional interpolation techniques are not able to recover high(More)
Brain extraction is an important step in the analysis of brain images. The variability in brain morphology and the difference in intensity characteristics due to imaging sequences make the development of a general purpose brain extraction algorithm challenging. To address this issue, we propose a new robust method (BEaST) dedicated to produce consistent and(More)
Many studies have shown widespread but subtle pathological changes in gray matter in patients with schizophrenia. Some of these studies have related specific alterations to the genesis of auditory hallucinations, particularly in the left superior temporal gyrus, but none has analysed the relationship between morphometric data and a specific scale for(More)
Diffusion Weighted Images (DWI) normally shows a low Signal to Noise Ratio (SNR) due to the presence of noise from the measurement process that complicates and biases the estimation of quantitative diffusion parameters. In this paper, a new denoising methodology is proposed that takes into consideration the multicomponent nature of multi-directional DWI(More)
In this paper, a new object-based method to estimate noise in magnitude MR images is proposed. The main advantage of this object-based method is its robustness to background artefacts such as ghosting. The proposed method is based on the adaptation of the Median Absolute Deviation (MAD) estimator in the wavelet domain for Rician noise. The MAD is a robust(More)
Magnetic resonance images are commonly affected by intensity inhomogeneities which make it difficult to obtain any quantitative measures from them. We present a new method of automatically correcting this artifact using a nonparametric coarse to fine approach which allows bias fields to be modeled with different frequency ranges without user supervision. We(More)