José Román Pérez-Castiñeira

Learn More
The plasma membrane (PM) H(+)-ATPase has been proposed to play important transport and regulatory roles in plant physiology, including its participation in auxin-induced acidification in coleoptile segments. This enzyme is encoded by a family of genes differing in tissue distribution, regulation, and expression level. A major expressed isoform of the maize(More)
Comparative studies between the proton-pumping, membrane-bound inorganic pyrophosphatases (H(+)-PPases) from hyperthermophilic and thermophilic prokaryotes and those from mesophilic organisms can now be performed because of very recent sequence data. Typical overall factors that contribute to protein thermostability are found in H(+)-PPases from(More)
Current evidence suggests the occurrence of two classes of vacuolar-type H(+)-translocating inorganic pyrophosphatases (V-PPases): K(+)-insensitive proteins, identified in eukaryotes, bacteria and archaea, and K(+)-stimulated V-PPases, identified to date only in eukaryotes. Here, we describe the functional characterization of a thermostable V-PPase from the(More)
Suggestions by Calvin about a role of inorganic pyrophosphate (PPi) in early photosynthesis and by Lipmann that PPi may have been the original energy-rich phosphate donor in biological energy conversion, were followed in the mid-1960s by experimental results with isolated chromatophore membranes from the purple photosynthetic bacterium Rhodospirillum(More)
Cancer cells show a metabolic shift that makes them overproduce protons; this has the potential to disturb the cellular acid-base homeostasis. However, these cells show cytoplasmic alkalinisation, increased acid extrusion and endosome-dependent drug resistance. Vacuolar type ATPases (V-ATPases), together with other transporters, are responsible to a great(More)
V-ATPases (vacuolar H+-ATPases) are a specific class of multi-subunit pumps that play an essential role in the generation of proton gradients across eukaryotic endomembranes. Another simpler proton pump that co-localizes with the V-ATPase occurs in plants and many protists: the single-subunit H+-PPase [H+-translocating PPase (inorganic pyrophosphatase)].(More)
Proton-translocating inorganic pyrophosphatases (H(+)-PPase, EC 3.6.1.1) are integral membrane proteins that have been extensively studied in higher plants, the photosynthetic bacterium Rhodospirillum rubrum and, more recently, in some human pathogenic protozoa. By using a PCR-based approach, fragments of genes coding for H(+)-PPases in a number of(More)
A procedure has been developed for the rapid purification and reconstitution into phospholipid vesicles of the proton-translocating ATPase of bovine adrenal chromaffin-granule membranes. It involves fractionation of the membranes with Triton X-114, resolubilization of the ATPase with n-octyl glucoside, addition of purified lipids and removal of detergent by(More)
Although several proton-pumping pyrophosphatases (H+-PPases) have been overexpressed in heterologous systems, purification of these recombinant integral membrane proteins in large amounts in order to study their structure-function relationships has proven to be a very difficult task. In this study we report a new method for large-scale production of pure(More)
An increasing body of biochemical and genetic evidence suggests that inorganic pyrophosphate (PPi) plays an important role in protist bioenergetics. In these organisms, two types of inorganic pyrophosphatases [EC 3.6.1.1, namely soluble PPases (sPPases) and proton-translocating PPases (H+-PPases)] that hydrolyse the PPi generated by cell anabolism, thereby(More)