Learn More
1. Cytosolic free calcium ion concentration ([Ca2+]i) and whole-cell L-type Ca2+ channel currents were measured during excitation-contraction (E-C) coupling in single voltage-clamped rat cardiac ventricular cells. The measurements were used to compute the total cellular efflux of calcium ions through sarcoplasmic reticulum (SR) Ca2+ release channels(More)
Rabbit carotid body (CB) chemoreceptor cells possess a fast-inactivating K+ current that is specifically inhibited by hypoxia. We have studied the expression of Kvalpha subunits, which might be responsible for this current. RT-PCR experiments identified the expression of Kv1.4, Kv3.4, Kv4.1 and Kv4.3 mRNAs in the rabbit CB. There was no expression of Kv3.3(More)
Voltage-gated K+ (KV) channels are protein complexes composed of ion-conducting integral membrane alpha subunits and cytoplasmic modulatory beta subunits. The differential expression and association of alpha and beta subunits seems to contribute significantly to the complexity and heterogeneity of KV channels in excitable cells, and their functional(More)
Excitation-contraction coupling was studied in mammalian cardiac cells in which the opening probability of L-type calcium (Ca2+) channels was reduced. Confocal microscopy during voltage-clamp depolarization revealed distinct local transients in the concentration of intracellular calcium ions ([Ca2+]i). When voltage was varied, the latency to occurrence and(More)
1. The electrical properties of chemoreceptor cells from neonatal rat and adult rabbit carotid bodies (CBs) are strikingly different. These differences have been suggested to be developmental and/or species related. To distinguish between the two possibilities, the whole-cell configuration of the patch-clamp technique was used to characterize the ionic(More)
The carotid body (CB) chemoreceptors participate in the ventilatory responses to acute and chronic hypoxia (CH). Arterial hypoxaemia increases breathing within seconds, and CB chemoreceptors are the principal contributors to this reflex hyperventilatory response. Acute hypoxia induces depolarization of CB chemoreceptors by inhibiting certain K+ channels,(More)
1. Confocal microscopy and the fluorescent Ca2+ indicator fluo-3 (K+ salt) were used to measure cytosolic free calcium ion concentration ([Ca2+]) during excitation-contraction (E-C) coupling in single, voltage-clamped, rat cardiac ventricular cells. 2. Local [Ca2+]i transients were measured nearly simultaneously in different, separate, subcellular volumes(More)
The ionic currents of carotid body type I cells and their possible involvement in the detection of oxygen tension (Po2) in arterial blood are unknown. The electrical properties of these cells were studied with the whole-cell patch clamp technique, and the hypothesis that ionic conductances can be altered by changes in PO2 was tested. The results show that(More)
The hypothesis that changes in environmental O2 tension (pO2) could affect the ionic conductances of dissociated type I cells of the carotid body was tested. Cells were subjected to whole-cell patch clamp and ionic currents were recorded in a control solution with normal pO2 (pO2 = 150 mmHg) and 3-5 min after exposure to the same solution with a lower pO2.(More)
Gram-negative bacterial infections are accompanied by inflammation and somatic or visceral pain. These symptoms are generally attributed to sensitization of nociceptors by inflammatory mediators released by immune cells. Nociceptor sensitization during inflammation occurs through activation of the Toll-like receptor 4 (TLR4) signalling pathway by(More)