Learn More
Pontin and reptin belong to the AAA+ family, and they are essential for the structural integrity and catalytic activity of several chromatin remodeling complexes. They are also indispensable for the assembly of several ribonucleoprotein complexes, including telomerase. Here, we propose a structural model of the yeast pontin/reptin complex based on a(More)
The 26S proteasome is the major ATP-dependent protease in eukaryotes and thus involved in regulating a diverse array of vital cellular processes. Three subcomplexes form this massive degradation machine: the lid, the base, and the core. While assembly of base and core has been well-studied, the detailed molecular mechanisms involved in formation of the(More)
Here, we employed the collective motions extracted from Normal Mode Analysis (NMA) in internal coordinates (torsional space) for the flexible fitting of atomic-resolution structures into electron microscopy (EM) density maps. The proposed methodology was validated using a benchmark of simulated cases, highlighting its robustness over the full range of EM(More)
MOTIVATION Dynamic simulations of systems with biologically relevant sizes and time scales are critical for understanding macromolecular functioning. Coarse-grained representations combined with normal mode analysis (NMA) have been established as an alternative to atomistic simulations. The versatility and efficiency of current approaches normally based on(More)
RepB initiates plasmid rolling-circle replication by binding to a triple 11-bp direct repeat (bind locus) and cleaving the DNA at a specific distant site located in a hairpin loop within the nic locus of the origin. The structure of native full-length RepB reveals a hexameric ring molecule, where each protomer has two domains. The origin-binding and(More)
The general transcription factor IID (TFIID) plays a central role in the initiation of RNA polymerase II (Pol II)-dependent transcription by nucleating pre-initiation complex (PIC) assembly at the core promoter. TFIID comprises the TATA-binding protein (TBP) and 13 TBP-associated factors (TAF1-13), which specifically interact with a variety of core promoter(More)
MOTIVATION Prediction of protein-protein complexes from the coordinates of their unbound components usually starts by generating many potential predictions from a rigid-body 6D search followed by a second stage that aims to refine such predictions. Here, we present and evaluate a new method to effectively address the complexity and sampling requirements of(More)
Elastic network models (ENMs) are coarse-grained descriptions of proteins as networks of coupled harmonic oscillators. However, despite their widespread application to study collective movements, there is still no consensus parametrization for the ENMs. When compared to molecular dynamics (MD) flexibility in solution, the ENMs tend to disperse the important(More)
Normal mode analysis (NMA) in internal (dihedral) coordinates naturally reproduces the collective functional motions of biological macromolecules. iMODS facilitates the exploration of such modes and generates feasible transition pathways between two homologous structures, even with large macromolecules. The distinctive internal coordinate formulation(More)
Keywords: Computational biology Macromolecular machines Normal modes Eigenvalue problems Krylov-subspace method Clusters of multicore processors a b s t r a c t Normal modes in internal coordinates (IC) furnish an excellent way to model functional collective motions of macromolecular machines, but exhibit a high computational cost when applied to(More)