Learn More
The spinning of spider silk requires a combination of aqueous environment and stretching, and the aim of this work was to explore the role of stretching silk fibers in an aqueous environment and its effect on the tensile properties of spider silk. In particular, the sensitivity of the spider silk tensile behaviour to wet-stretching could be relevant in the(More)
The development of an accurate and reproducible approach to measuring the tensile behavior of spider silk has allowed characterizing and comparing the range of mechanical properties exhibited by different spider species with unprecedented detail. The comparison of silks spun by spiders belonging to different phylogenetic groups has revealed that evolution(More)
A modified forced silking procedure was developed to allow an accurate study of the tensile properties of spider (Argiope trifasciata) silk, especially the characterization of the variability of the tensile properties of forcibly silked fibers. The procedure involves an immobilization technique that does not require anesthetization of the spider, a mode of(More)
The remarkable properties of spider silks have stimulated an increasing interest in understanding the roles of their composition and processing, as well as in the mass-production of these fibers. Previously, the variability in the mechanical properties of natural silk fibers was a major drawback in the elucidation of their behavior, but the authors have(More)
The characterization of silk properties requires a reliable measurement of stress-strain curves from tensile tests, which calls for a detailed analysis of what is considered the cross section of the sample and how it varies during the experiments. Here, spider silk fibers from the major ampullate gland (MAS) of Argiope trifasciata spiders are tensile(More)
A new forced silking procedure has been developed that allows measurement of the low forces involved in the silking process and, subsequently, retrieval and tensile testing of the samples spun at the measured silking forces. A strong correlation between silking force and tensile behaviour of spider silk has been established. Fibres spun at high silking(More)
The development of a reliable procedure for removing the viscous coating of viscid silk has allowed the accurate characterization of the tensile behavior of clean flagelliform silk (i.e., silk of the flagelliform gland without the viscous coating synthetised in the aggregate gland). For comparison, tensile tests on native viscid silk (with the viscous(More)
Major ampullate (MA) dragline silk supports spider orb webs, combining strength and extensibility in the toughest biomaterial. MA silk evolved ~376 MYA and identifying how evolutionary changes in proteins influenced silk mechanics is crucial for biomimetics, but is hindered by high spinning plasticity. We use supercontraction to remove that variation and(More)
The mechanical behavior and microstructure of minor ampullate gland silk (miS) of two orb-web spinning species, Argiope trifasciata and Nephila inaurata, were extensively characterized, enabling detailed comparison with other silks. The similarities and differences exhibited by miS when compared with the intensively studied major ampullate gland silk (MAS)(More)
Supercontraction is commonly considered as a functional adaptation of major ampullate gland (MA) silk to its role as the main structural material in orb-webs. However, the observation of supercontraction in the dragline silk of a lynx spider species, as it is shown in this work, offers a strong support to the hypothesis that the appearance of(More)