José Marques-Lopes

Learn More
Renin–angiotensin system overactivity, upregulation of postsynaptic NMDA receptor function, and increased reactive oxygen species (ROS) production in the hypothalamic paraventricular nucleus (PVN) are hallmarks of angiotensin II (AngII)-induced hypertension, which is far more common in young males than in young females. We hypothesize that the sex(More)
The incidence of hypertension increases after menopause. Similar to humans, "slow-pressor" doses of angiotensin II (AngII) increase blood pressure in young males, but not in young female mice. However, AngII increases blood pressure in aged female mice, paralleling reproductive hormonal changes. These changes could influence receptor trafficking in central(More)
In the central nervous system, angiotensin II (AngII) binds to angiotensin type 1 receptors (AT(1)Rs) to affect autonomic and endocrine functions as well as learning and memory. However, understanding the function of cells containing AT(1)Rs has been restricted by limited availability of specific antisera, difficulties discriminating AT(1)R-immunoreactive(More)
Nociceptive transmission from the spinal cord is controlled by supraspinal pain modulating systems that include the caudal ventrolateral medulla (CVLM). The neuropeptide angiotensin II (Ang II) has multiple effects in the CNS and at the medulla oblongata. Here we evaluated the expression of angiotensin type 1 (AT(1)) receptors in spinally-projecting CVLM(More)
The caudal ventrolateral medulla (CVLM) is a key component of the supraspinal pain modulatory system. Pain modulation from the CVLM is partially relayed by spinally projecting noradrenergic neurons of the pontine A(5) cell group, which leave collateral fibres at the CVLM. The injection of angiotensin II (Ang II) into the CVLM was recently shown to induce(More)
Adaptive changes in glutamatergic signaling within the hypothalamic paraventricular nucleus (PVN) may play a role in the neurohumoral dysfunction underlying the hypertension induced by "slow-pressor" ANG II infusion. We hypothesized that these adaptive changes alter production of gp91phox NADPH oxidase (NOX)-derived reactive oxygen species (ROS) or nitric(More)
At younger ages, women have a lower risk for hypertension than men, but this sexual dimorphism declines with the onset of menopause. These differences are paralleled in rodents following "slow-pressor" angiotensin II (AngII) administration: young male and aged female mice, but not young females, develop hypertension. There is also an established sexual(More)
Hypertension in males and aging female rodents is associated with glutamate-dependent plasticity in the hypothalamus, but existing models have failed to capture distinct transitional menopausal phases that could have significant impact on the synaptic plasticity and emergent hypertension. In rodents, accelerated ovarian failure (AOF) induced by systemic(More)
There are profound, yet incompletely understood, sex differences in the neurogenic regulation of blood pressure. Both corticotropin signaling and glutamate receptor plasticity, which differ between males and females, are known to play important roles in the neural regulation of blood pressure. However, the relationship between hypertension and glutamate(More)
N-methyl-D-aspartate receptors (NMDAR) have a role in cardiovascular control at the nucleus tractus solitarii (NTS), eliciting increases or decreases in blood pressure (BP), depending on the area injected with the agonists. In spite of the association between cardiovascular control and pain modulation, the effects of manipulating NMDAR in pain responses(More)
  • 1