Learn More
Comparison of the gene-expression profiles between adults of Drosophila melanogaster and Drosophila simulans has uncovered the evolution of genes that exhibit sex-dependent regulation. Approximately half the genes showed differences in expression between the species, and among these, approximately 83% involved a gain, loss, increase, decrease, or reversal(More)
A number of genes associated with sexual traits and reproduction evolve at the sequence level faster than the majority of genes coding for non-sex-related traits. Whole genome analyses allow this observation to be extended beyond the limited set of genes that have been studied thus far. We use cDNA microarrays to demonstrate that this pattern holds in(More)
During the evolution of the genus Drosophila, the molecular organization of the major chromosomal elements has been repeatedly rearranged via the fixation of paracentric inversions. Little detailed information is available, however, on the extent and effect of these changes at the molecular level. In principle, a full description of the rate and pattern of(More)
Hybrids between species are often characterized by novel gene-expression patterns. A recent study on allele-specific gene expression in hybrids between species of Drosophila revealed cases in which cis- and trans-regulatory elements within species had coevolved in such a way that changes in cis-regulatory elements are compensated by changes in(More)
That closely related species often differ by chromosomal inversions was discovered by Sturtevant and Plunkett in 1926. Our knowledge of how these inversions originate is still very limited, although a prevailing view is that they are facilitated by ectopic recombination events between inverted repetitive sequences. The availability of genome sequences of(More)
When females of Drosophila melanogaster and males of Drosophila simulans are mated, the male progeny are inviable, whereas the female progeny display manifold malformations and are sterile. These abnormalities result from genetic incompatibilities accumulated since the time the lineages of the species diverged, and may have their origin in aberrant gene(More)
Thirty-three DNA clones containing protein-coding genes have been used for in situ hybridization to the polytene chromosomes of two Drosophila repleta group species, D. repleta and D. buzzatii. Twenty-six clones gave positive results allowing the precise localization of 26 genes and the tentative identification of another nine. The results were fully(More)
During evolution, gene repatterning across eukaryotic genomes is not uniform. Some genomic regions exhibit a gene organization conserved phylogenetically, while others are recurrently involved in chromosomal rearrangement, resulting in breakpoint reuse. Both gene order conservation and breakpoint reuse can result from the existence of functional constraints(More)
Although polymorphic inversions in Drosophila are very common, the origin of these chromosomal rearrangements is unclear. The breakpoints of the cosmopolitan inversion 2j of D. buzzatii were cloned and sequenced. Both breakpoints contain large insertions corresponding to a transposable element. It appears that the two pairs of target site duplications(More)
In interspecific hybrids, novel phenotypes often emerge from the interaction of two divergent genomes. Interactions between the two transcriptional networks are assumed to contribute to these unpredicted new phenotypes by inducing novel patterns of gene expression. Here we provide a review of the recent literature on the accumulation of regulatory(More)