Learn More
This paper presents a proposal for the extraction of association rules called G3PARM (Grammar-Guided Genetic Programming for Association Rule Mining) that makes the knowledge extracted more expressive and flexible. This algorithm allows a context-free grammar to be adapted and applied to each specific problem or domain and eliminates the problems raised by(More)
OBJECTIVE To determine whether high-sensitivity C-reactive protein (hsCRP) and serum amyloid A (SAA) predict stroke, vascular events, and mortality in a prospective cohort study. BACKGROUND Markers of inflammation have been associated with risk of myocardial infarction (MI). Their association with stroke is controversial. METHODS The Northern Manhattan(More)
Rare association rules are those that only appear infrequently even though they are highly associated with very specific data. In consequence, these rules can be very appropriate for using with educational datasets since they are usually imbalanced. In this paper, we explore the extraction of rare association rules when gathering student usage data from a(More)
  • M I López, J M Luna, C Romero, S Ventura
  • 2012
This paper proposes a classification via clustering approach to predict the final marks in a university course on the basis of forum data. The objective is twofold: to determine if student participation in the course forum can be a good predictor of the final marks for the course and to examine whether the proposed classification via clustering approach can(More)
— This paper presents the G3PARM algorithm for mining representative association rules. G3PARM is an evolutionary algorithm that uses G3P (Grammar Guided Genetic Programming) and an auxiliary population made up of its best individuals who will then act as parents for the next generation. Due to the nature of G3P, the G3PARM algorithm allows us to obtain(More)
Association rule mining is a well-known data mining task, but it requires much computational time and memory when mining large scale data sets of high dimensionality. This is mainly due to the evaluation process, where the antecedent and consequent in each rule mined are evaluated for each record. This paper presents a novel methodology for evaluating(More)