José Manuel Chico

Learn More
Jasmonates are essential phytohormones for plant development and survival. However, the molecular details of their signalling pathway remain largely unknown. The identification more than a decade ago of COI1 as an F-box protein suggested the existence of a repressor of jasmonate responses that is targeted by the SCF(COI1) complex for proteasome degradation(More)
In spite of the importance of jasmonates (JAs) as plant growth and stress regulators, the molecular components of their signaling pathway remain largely unknown. By means of a genetic screen that exploits the cross talk between ethylene (ET) and JAs, we describe the identification of several new loci involved in JA signaling and the characterization and(More)
Discovery of the jasmonate ZIM-domain (JAZ) repressors defined the core jasmonate (JA) signalling module as COI1-JAZ-MYC2, and allowed a full view of the JA signalling pathway from hormone perception to transcriptional reprogramming. JAZ proteins are repressors of MYC2 and targets of SCF(COI1), which is the likely jasmonate receptor. Upon hormone(More)
Jasmonates regulate specific developmental processes and plant adaptation to environment by controlling responses to external biotic or abiotic stimuli. The core events of jasmonate signalling are now defined. After hormone perception by SCF(COI1), JAZ (JAsmonate ZIM domain) repressors are targeted for proteasome degradation, releasing MYC2 and(More)
Jasmonoyl-isoleucine (JA-Ile) is a plant hormone that regulates a broad array of plant defence and developmental processes. JA-Ile-responsive gene expression is regulated by the transcriptional activator MYC2 that interacts physically with the jasmonate ZIM-domain (JAZ) repressor proteins. On perception of JA-Ile, JAZ proteins are degraded and(More)
In spite of the importance of jasmonates (JAs) as plant growth and stress regulators, the molecular components of their signaling pathway remain largely unknown. By means of a genetic screen that exploits the cross talk between ethylene (ET) and JAs, we describe the identification of several new loci involved in JA signaling and the characterization and(More)
Photosynthetic performance was monitored during two consecutive summers in four co-occurring evergreen Mediterranean tree species growing on a south-facing rocky slope. In response to midday water stress, the drought-avoiding species Pinus halepensis Mill. exhibited marked stomatal closure (g(s)) but no changes in stem water potential (Psi(s)), whereas the(More)
Jasmonates (JAs) are essential hormones for plant defense and development. In spite of their importance, the molecular details of their signaling pathways remain largely unknown. A new family of regulators of JA signaling named JAZ, jasmonate ZIM-domain proteins, has recently been described. JAZ proteins repress of JA signaling and are targeted by the(More)
Ethylene (ET) plays a critical role in the activation of plant defenses against different biotic stresses through its participation in a complex signaling network that includes jasmonic acid (JA), salicylic acid (SA), and abscisic acid (ABA). Pathogen attack, wounding, and herbivory trigger asymmetric activation of this defense signaling network, thereby(More)
A full-length cDNA clone (LeCDPK1) from tomato (Lycopersicon esculentum) encoding a calcium-dependent protein kinase (CDPK) was isolated by screening a cDNA library from tomato cell cultures exposed to Cladosporium fulvum elicitor preparations. The predicted amino acid sequence of the cDNA reveals a high degree of similarity with other members of the CDPK(More)