Learn More
Atmospheric CO2 enrichment may stimulate plant growth directly through (1) enhanced photosynthesis or indirectly, through (2) reduced plant water consumption and hence slower soil moisture depletion, or the combination of both. Herein we describe gas exchange, plant biomass and species responses of five native or semi-native temperate and Mediterranean(More)
Soil respiration (SR) constitutes the largest flux of CO(2) from terrestrial ecosystems to the atmosphere. However, there still exist considerable uncertainties as to its actual magnitude, as well as its spatial and interannual variability. Based on a reanalysis and synthesis of 80 site-years for 57 forests, plantations, savannas, shrublands and grasslands(More)
Land-use change is likely to be a major component of global change at high latitudes, potentially causing significant alterations in soil C and N cycling. We addressed the biogeochemical impacts of land-use change in fully replicated black spruce forests and agricultural fields of different ages (following deforestation) and under different management(More)
Ecosystems in dry regions are generally low in productivity and carbon (C) storage. We report, however, large increases in C sequestration following afforestation of a semi-arid shrubland with Pinus halepensis trees. Using C and nitrogen (N) inventories, based in part on site-specific allometric equations, we measured an increase in the standing ecosystem C(More)
Nitrogen (N) and water availability are important factors affecting ecosystem productivity that can be influenced by land-use change. We hypothesized that the observed increase in carbon (C) sequestration associated with afforestation of semi-arid sparse shrubland must also be associated with an increase in N input. We tested this hypothesis by(More)
C limate extremes are expected to become more frequent and more intense, so that today's extremes may fall within normal background fluctuations in the future (Mora et al. 2013; Bahn et al. 2014). At the same time, new climate extremes will increase in magnitude and variability (Knapp et al. 2008). Extreme events can have important ecological consequences,(More)
Global change can greatly affect plant populations both directly by influencing growing conditions and indirectly by maternal effects on development of offspring. More information is needed on transgenerational effects of global change on plants and their interactions with pathogens. The current study assessed potential maternal effects of atmospheric CO(2)(More)
The large boreal carbon (C) stocks in Alaska are vulnerable to losses from disturbance, such as clearcut logging and deforestation for agricultural development. Here we investigated impacts of logging in uplands and agricultural deforestation in lowlands on C and nitrogen (N) stocks in Interior Alaska, using chronosequences, and synthesized results from(More)
California and Israel are both characterized by Mediterranean climates, and the native oaks growing in these two locales occupy similar ecological niches. However, in California certain oak species are having difficulty regenerating adequately, while in Israel this is not a problem. From 2004 to 2006, a series of greenhouse studies were conducted in both(More)
  • 1