Learn More
Given a set of mixed spectral (multispectral or hyperspectral) vectors, linear spectral mixture analysis, or linear unmixing, aims at estimating the number of reference substances, also called endmembers, their spectral signatures, and their abundance fractions. This paper presents a new method for unsupervised endmember extraction from hyperspectral data,(More)
Iterative shrinkage/thresholding (IST) algorithms have been recently proposed to handle a class of convex unconstrained optimization problems arising in image restoration and other linear inverse problems. This class of problems results from combining a linear observation model with a nonquadratic regularizer (e.g., total variation or wavelet-based(More)
We propose a new fast algorithm for solving one of the standard formulations of image restoration and reconstruction which consists of an unconstrained optimization problem where the objective includes an l2 data-fidelity term and a nonsmooth regularizer. This formulation allows both wavelet-based (with orthogonal or frame-based representations)(More)
We propose a new fast algorithm for solving one of the standard approaches to ill-posed linear inverse problems (IPLIP), where a (possibly nonsmooth) regularizer is minimized under the constraint that the solution explains the observations sufficiently well. Although the regularizer and constraint are usually convex, several particular features of these(More)
Standard formulations of image/signal deconvolution under wavelet-based priors/regularizers lead to very high-dimensional optimization problems involving the following difficulties: the non-Gaussian (heavy-tailed) wavelet priors lead to objective functions which are nonquadratic, usually nondifferentiable, and sometimes even nonconvex; the presence of the(More)
This paper presents a new method of minimum volume class for hyperspectral unmixing, termed minimum volume simplex analysis (MVSA). The underlying mixing model is linear; i.e., the mixed hyperspectral vectors are modeled by a linear mixture of the end-member signatures weighted by the correspondent abundance fractions. MVSA approaches hyperspectral unmixing(More)
Linear spectral unmixing is a popular tool in remotely sensed hyperspectral data interpretation. It aims at estimating the fractional abundances of pure spectral signatures (also called endmembers) in each mixed pixel collected by an imaging spectrometer. In many situations, the identification of endmember signatures in the original data set may be(More)
—Spectral unmixing aims at estimating the fractional abundances of pure spectral signatures (also called endmembers) in each mixed pixel collected by a remote sensing hyperspectral imaging instrument. In recent work, the linear spectral unmixing problem has been approached in semisupervised fashion as a sparse regression one, under the assumption that the(More)
Image deconvolution is formulated in the wavelet domain under the Bayesian framework. The well-known sparsity of the wavelet coefficients of real-world images is modeled by heavy-tailed priors belonging to the Gaussian scale mixture (GSM) class; i.e., priors given by a linear (finite of infinite) combination of Gaussian densities. This class includes, among(More)