Learn More
The sudden and transient hypersynchrony of neuronal firing that characterizes epileptic seizures can be considered as the transitory stabilization of metastable states present within the dynamical repertoire of a neuronal network. Using an in vitro model of recurrent spontaneous seizures in the rat horizontal hippocampal slice preparation, we present an(More)
Free radical (FR) production, a major step in calcium-dependent neurodegeneration, has been linked to the generation of epileptiform activity and seizure-induced cell death. However, direct evidence of FR production in neurons during seizures has never been presented. Using hippocampal cultured slices we demonstrate that FRs are produced in CA3 but not CA1(More)
A rigorous characterization of the dynamic regimes underlying human seizures is needed to understand, and possibly control, the transition to seizure. Intra- or extracranial brain electrical activity was recorded in five patients with partial epilepsy, and the interictal and ictal activity analysed to determine the dynamics of seizures. We constructed(More)
The scientific study of subjective experience is a current major research area in the neurosciences. Coordination patterns of brain activity are being studied to address the question of how brain function relates to behaviour, and particularly methods to estimate neuronal synchronization can unravel the spatio-temporal dynamics of the transient formation of(More)
Phase synchrony analysis is a relatively new concept that is being increasingly used on neurophysiological data obtained through different methodologies. It is currently believed that phase synchrony is an important signature of information binding between distant sites of the brain, especially during cognitive tasks. Electroencephalographic (EEG)(More)
Much work now emphasizes the concept that interneuronal networks play critical roles in generating synchronized, oscillatory behavior. Experimental work has shown that functional inhibitory networks alone can produce synchronized activity, and theoretical work has demonstrated how synchrony could occur in mutually inhibitory networks. Even though gap(More)
Increasing experimental evidence indicates that gap junctions can be modulated by neurotransmitters, in particular dopamine. To examine possible modulation of gap junctional communication in the rat hippocampus by neurotransmitters, we studied dye coupling and electrotonic transmission in the CA1 area in the presence of carbachol, a cholinergic agonist, and(More)
PURPOSE Typical absence seizures differ from atypical absence seizures in terms of semiology, EEG morphology, network circuitry, and cognitive outcome, yet have the same pharmacological profile. We have compared typical to atypical absence seizures, in terms of the recruitment of different brain areas. Our initial question was whether brain areas that do(More)
We studied the contribution of GABAergic (gamma-aminobutyric acid) neurotransmission to epileptiform activity using the horizontal hippocampal rat brain slice. Seizure-like (ictal) activity was evoked in the CA1 area by applying high-frequency trains (80 Hz for 2 s) to the Schaffer collaterals. Whole-cell recordings from stratum oriens-alveus interneurons(More)
Epileptic seizures represent a sudden and transient change in the synchronised firing of neuronal brain ensembles. While the transition of the collective neuronal activity towards the ictal event is not well understood, some progress has been made using nonlinear time series analysis methods. We present here an analysis of the dynamical regimes of the(More)