José Luis Pérez Velázquez

Learn More
Traumatic brain injury results in neuronal loss and associated neurological deficits. Although most research on the factors leading to trauma-induced damage focuses on synaptic or ionic mechanisms, the possible role of direct intercellular communication via gap junctions has remained unexplored. Gap junctions connect directly the cytoplasms of coupled(More)
Reactive oxygen species have been implicated in the development of seizures under pathological conditions and linked to seizure-induced neurodegeneration. There has been little direct evidence, however, of free radical production resulting from seizures. Using amygdala-kindled rats, we have examined the generation of reactive oxygen species following(More)
Direct electrical coupling between neurons can be the result of both electrotonic current transfer through gap junctions and extracellular fields. Intracellular recordings from CA1 pyramidal neurons of rat hippocampal slices showed two different types of small-amplitude coupling potentials: short-duration (5 ms) biphasic spikelets, which resembled(More)
Organotypic brain slice cultures have been used in a variety of studies on neurodegenerative processes [K.M. Abdel-Hamid, M. Tymianski, Mechanisms and effects of intracellular calcium buffering on neuronal survival in organotypic hippocampal cultures exposed to anoxia/aglycemia or to excitotoxins, J. Neurosci. 17, 1997, pp. 3538-3553; D.W. Newell, A. Barth,(More)
Current theories of brain function propose that the coordinated integration of transient activity patterns in distinct brain regions is the essence of brain information processing. The behavioural manifestations of individuals with autism spectrum disorders (ASD) suggest that their brains have a different style of information processing. Specifically, a(More)
Perfusion of rat brain slices with low millimole CsCl elicits slow oscillations of </=1 Hz in hippocampal CA1 pyramidal neurons. These oscillations are GABAA receptor-mediated hyperpolarizations that permit a coherent fire-pause pattern in a population of CA1 neurons. They can persist without the activation of ionotropic glutamate receptors but require(More)
Synchronization is a fundamental characteristic of complex systems and a basic mechanism of self-organization. A traditional, accepted perspective on epileptiform activity holds that hypersynchrony covering large brain regions is a hallmark of generalized seizures. However, a few recent reports have described substantial fluctuations in synchrony before and(More)
Ischemic brain injury results in neuronal loss and associated neurologic deficits. Although there is some evidence that intercellular communication via gap junctions can spread oxidative cell injury, the possible role of gap-junctional communication in ischemia-induced cell death is the object of debate. Because gap junctions directly connect the cytoplasms(More)
The old concept that the direct intercellular cytoplasmic connections between neurones participate in the coordination of neuronal activity has gained new relevance, owing to recent theoretical and experimental evidence, particularly with regard to neuronal synchronization and epileptogenesis. Computer simulations demonstrating that neurones synchronize and(More)
While there is evidence that gap junctions play important roles in the determination of cell injuries, there is not much known about mechanisms by which gap junctional communication may exert these functions. Using a global model of transient ischaemia in rats, we found that pretreatment with the gap junctional blockers carbenoxolone, 18alpha-glycyrrhetinic(More)