Learn More
In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Accordingly, it is important to update these guidelines for monitoring autophagy(More)
The target of rapamycin (TOR) proteins in Saccharomyces cerevisiae, TOR1 and TOR2, redundantly regulate growth in a rapamycin-sensitive manner. TOR2 additionally regulates polarization of the actin cytoskeleton in a rapamycin-insensitive manner. We describe two functionally distinct TOR complexes. TOR Complex 1 (TORC1) contains TOR1 or TOR2, KOG1 (YHR186c),(More)
The essential, rapamycin-sensitive TOR kinases regulate a diverse set of cell growth-related readouts in response to nutrients. Thus, the yeast TOR proteins function as nutrient sensors, in particular as sensors of nitrogen and possibly carbon. However, the nutrient metabolite(s) that acts upstream of TOR is unknown. We investigated the role of glutamine, a(More)
TOR (target of rapamycin) is a phosphatidylinositol kinase-related protein kinase that controls cell growth in response to nutrients. Rapamycin is an immunosuppressive and anticancer drug that acts by inhibiting TOR. The modes of action of TOR and rapamycin are remarkably conserved from S. cerevisiae to humans. The current understanding of TOR and rapamycin(More)
The target of rapamycin (TOR) is a conserved Ser/Thr kinase that controls cell growth by activating an array of anabolic processes including protein synthesis, transcription and ribosome biogenesis, and by inhibiting catabolic processes such as mRNA degradation and autophagy. Control of autophagy by TOR occurs primarily at the induction step, and involves(More)
The GATA transcription factors GLN3 and GAT1 activate nitrogen-regulated genes in Saccharomyces cerevisiae. NPR1 is a protein kinase that controls post-Golgi sorting of amino acid permeases. In the presence of a good nitrogen source, TOR (target of rapamycin) maintains GLN3 and NPR1 phosphorylated and inactive by inhibiting the type 2A-related phosphatase(More)
Autophagy is a catabolic membrane-trafficking process whereby cells recycle cytosolic proteins and organelles under stress conditions or during development. This degradative process is mediated by autophagy-related (ATG) proteins that have been described in yeast, animals, and more recently in plants. In this study, we report the molecular characterization(More)
The macrolide rapamycin specifically binds the 12-kD FK506-binding protein (FKBP12), and this complex potently inhibits the target of rapamycin (TOR) kinase. The identification of TOR in Arabidopsis (Arabidopsis thaliana) revealed that TOR is conserved in photosynthetic eukaryotes. However, research on TOR signaling in plants has been hampered by the(More)
In Arabidopsis thaliana, DES1 is the only identified L-Cysteine desulfhydrase located in the cytosol, and it is involved in the degradation of cysteine and the concomitant production of H(2)S in this cell compartment. Detailed characterization of the T-DNA insertion mutants des1-1 and des1-2 has provided insight into the role of sulfide metabolically(More)