Learn More
Proximal-distal leg development in Drosophila involves a battery of genes expressed and required in specific proximal-distal (PD) domains of the appendage. Here we report the characterisation of a new gene of this type, dlim1, a member of the Lhx family of genes whose proteins contain two Lim domains and a homeodomain. We show that the Lhx gene apterous(More)
Small open reading frames (smORFs) are short DNA sequences that are able to encode small peptides of less than 100 amino acids. Study of these elements has been neglected despite thousands existing in our genomes. We and others previously showed that peptides as short as 11 amino acids are translated and provide essential functions during insect(More)
Through division into segments, animal bodies can reach higher degrees of complexity and functionality during development and evolution. The segmentation mechanisms of insects and vertebrates have been seen as fundamentally different at the anatomical and molecular levels, and consequently, independently evolved. However, this conclusion was mostly based on(More)
Sequential addition of segments in the posteriorly growing end of the embryo is a developmental mechanism common to many bilaterians. However, posterior growth and patterning in most animals also entails the establishment of a 'posterior organiser' that expresses the Caudal and Wnt proteins and has been proposed to be an ancestral feature of animal(More)
Proximodistal patterning in Drosophila requires division of the developing leg into increasingly smaller, discrete domains of gene function. The LIM-HOM transcription factors apterous (ap) and Lim1 (also known as dlim1), and the homeobox genes Bar and aristaless (al) are part of the gene battery required for the development of specific leg segments. Our(More)
Despite recent advances in developmental biology, and the sequencing and annotation of genomes, key questions regarding the organisation of cells into embryos remain. One possibility is that uncharacterised genes having nonstandard coding arrangements and functions could provide some of the answers. Here we present the characterisation of tarsal-less (tal),(More)
The polycistronic and non-canonical gene tarsal-less encodes several short peptides 11 to 32 aminoacids long. tarsal-less is required for embryonic and imaginal development in Drosophila, but the molecular and cellular bases of its function are not known. Here we show that tarsal-less function triggers a cell signal. This signal has a range of 2-3 cells in(More)
Hundreds, perhaps thousands of previously unidentified functional small peptides could exist in most genomes, but these sequences have been generally overlooked. The discovery of genes encoding small peptides with important functions in different organisms has ignited the interest in these sequences and led to an increasing amount of effort towards their(More)
Evolutionary studies suggest that the limbs of vertebrates and the appendages of arthropods do not share a common origin. However, recent genetic studies show new similarities in their developmental programmes. These similarities might be caused by the independent recruitment of homologous genes for similar functions or by the conservation of an ancestral(More)
The insect leg and antenna are thought to be homologous structures, evolved from a common ancestral appendage. The homeotic transformations of antenna to leg in Drosophila produced by mutation of the Hox gene Antennapedia are position-specific, such that every particular antenna structure is transformed into a specific leg counterpart. This has been taken(More)