Learn More
This paper presents <i>core fusion,</i> a reconfigurable chip multiprocessor(CMP) architecture where groups of fundamentally independent cores can dynamically morph into a larger CPU, or they can be used as distinct processing elements, as needed at run time by applications. Core fusion gracefully accommodates software diversity and incremental(More)
Long-latency loads are critical in today's processors due to the ever-increasing speed gap with memory. Not only do these loads block the execution of dependent instructions, they also prevent other instructions from moving through the in-order reorder buffer (ROB) and retire. As a result, the processor quickly fills up with uncommitted instructions, and(More)
Although silicon optical technology is still in its formative stages, and the more near-term application is chip-to-chip communication, rapid advances have been made in the development of on-chip optical interconnects. In this paper, we investigate the integration of CMOS-compatible optical technology to on-chip cache-coherent buses in future CMPs. While(More)
Aggressive CMOS scaling will make future chip multiprocessors (CMPs) increasingly susceptible to transient faults, hard errors, manufacturing defects, and process variations. Existing fault-tolerant CMP proposals that implement dual modular redundancy (DMR) do so by statically binding pairs of adjacent cores via dedicated communication channels and buffers.(More)
Efficient sharing of system resources is critical to obtaining high utilization and enforcing system-level performance objectives on chip multiprocessors (CMPs). Although several proposals that address the management of a single microarchitectural resource have been published in the literature, coordinated management of multiple interacting resources on(More)
Efficiently utilizing off-chip DRAM bandwidth is a critical issuein designing cost-effective, high-performance chip multiprocessors(CMPs). Conventional memory controllers deliver relativelylow performance in part because they often employ fixed,rigid access scheduling policies designed for average-case applicationbehavior. As a result, they cannot learn and(More)
Previous proposals for power-aware thread-level parallelism on chip multiprocessors (CMPs) mostly focus on multiprogrammed workloads. Nonetheless, parallel computation of a single application is critical in light of the expanding performance demands of important future workloads. This work addresses the problem of dynamically optimizing power consumption of(More)
Recent DRAM specifications exhibit increasing refresh latencies. A refresh command blocks a full rank, decreasing available parallelism in the memory subsystem significantly, thus decreasing performance. Fine Granularity Refresh (FGR) is a feature recently announced as part of JEDEC's DDR4 DRAM specification that attempts to tackle this problem by creating(More)
Much research has been devoted to making microprocessors energy-efficient. However, little attention has been paid to multiprocessor environments where, due to the cooperative nature of the computation, the most energy-efficient execution in each processor may not translate into the most energy-efficient overall execution. We present the thrifty barrier, a(More)
We present an all-optical approach to constructing data networks on chip that combines the following key features: (1) Wavelength-based routing, where the route followed by a packet depends solely on the wavelength of its carrier signal, and not on information either contained in the packet or traveling along with it. (2) Oblivious routing, by which the(More)