José Enrique Juliá

Learn More
UNLABELLED Thermal energy storage (TES) is extremely important in concentrated solar power (CSP) plants since it represents the main difference and advantage of CSP plants with respect to other renewable energy sources such as wind, photovoltaic, etc. CSP represents a low-carbon emission renewable source of energy, and TES allows CSP plants to have energy(More)
This paper presents a complete methodology to perform fuel concentration measurements of Diesel sprays in isothermal conditions using the Planar Laser-Induced Fluorescence (PLIF) technique. The natural fluorescence of a commercial Diesel fuel is used with an excitation wavelength of 355 nm. The correction and calibration procedures to perform accurate(More)
Thermal energy storage (TES) systems using phase change materials (PCM) have been lately studied and are presented as one of the key solutions for the implementation of renewable energies. These systems take advantage of the latent heat of phase change of PCM during their melting/solidification processes to store or release heat depending on the needs and(More)
A one-dimensional simplification, based on optimal feature extraction, of the algorithm based on the likelihood-ratio test method (LRT) for segmentation in colored Diesel spray images is presented. If the pixel values of the Diesel spray and the combustion images are represented in RGB space, in most cases they are distributed in an area with a given(More)
Solar energy is available over wide geographical areas and its harnessing is becoming an essential tool to satisfy the ever-increasing demand for energy with minimal environmental impact. Solar nanofluids are a novel solar receiver concept for efficient harvesting of solar radiation based on volumetric absorption of directly irradiated nanoparticles in a(More)
The use of an on-line monitoring method based on photoelasticity techniques for the fabrication of micro-optical components by means of controlled laser heating is described. From this description it is possible to show in real time the mechanical stresses that form the microelement. A new parameter, stressed area, is introduced that quantifies the stresses(More)
A laser-based “green” synthesis of nanoparticles (NPs) was used to manufacture gold NPs in water. The light source is a Ti:Sapphire laser with 30 fs FWHM pulses, 800 nm mean wavelength, and 1 kHz repetition rate. The method involves two stages: (1) pulsed laser ablation in liquids and (2) photo-fragmentation (PF). Highly pure and well-dispersed NPs with a(More)
  • 1