José E. Pérez-Ortín

Learn More
The Comprehensive Yeast Genome Database (CYGD) compiles a comprehensive data resource for information on the cellular functions of the yeast Saccharomyces cerevisiae and related species, chosen as the best understood model organism for eukaryotes. The database serves as a common resource generated by a European consortium, going beyond the provision of(More)
Most studies of eukaryotic gene regulation have been done looking at mature mRNA levels. Nevertheless, the steady-state mRNA level is the result of two opposing factors: transcription rate (TR) and mRNA degradation. Both can be important points to regulate gene expression. Here we show a new method that combines the use of nylon macroarrays and in vivo(More)
Gene expression profiles of a wine strain of Saccharomyces cerevisiae PYCC4072 were monitored during alcoholic fermentations with three different nitrogen supplies: (i) control fermentation (with enough nitrogen to complete sugar fermentation), (ii) nitrogen-limiting fermentation, and (iii) the addition of nitrogen to the nitrogen-limiting fermentation(More)
Hyperosmotic stress yields reprogramming of gene expression in Saccharomyces cerevisiae cells. Most of this response is orchestrated by Hog1, a stress-activated, mitogen-activated protein kinase (MAPK) homologous to human p38. We investigated, on a genomic scale, the contribution of changes in transcription rates and mRNA stabilities to the modulation of(More)
Wine yeast strains show a high level of chromosome length polymorphism. This polymorphism is mainly generated by illegitimate recombination mediated by Ty transposons or subtelomeric repeated sequences. We have found, however, that the SSU1-R allele, which confers sulfite resistance to yeast cells, is the product of a reciprocal translocation between(More)
Natural strains of Saccharomyces cerevisiae are prototrophic homothallic yeasts that sporulate poorly, are often heterozygous, and may be aneuploid. This genomic constitution may confer selective advantages in some environments. Different mechanisms of recombination, such as meiosis or mitotic rearrangement of chromosomes, have been proposed for wine(More)
Maintaining proper mRNA levels is a key aspect in the regulation of gene expression. The balance between mRNA synthesis and decay determines these levels. We demonstrate that most yeast mRNAs are degraded by the cytoplasmic 5'-to-3' pathway (the "decaysome"), as proposed previously. Unexpectedly, the level of these mRNAs is highly robust to perturbations in(More)
As an adaptive response to new conditions, mRNA concentrations in eukaryotes are readjusted after any environmental change. Although mRNA concentrations can be modified by altering synthesis and/or degradation rates, the rapidity of the transition to a new concentration depends on the regulation of mRNA stability. There are several plausible transcriptional(More)
Inner nuclear membrane proteins containing a LEM (LAP2, emerin, and MAN1) domain participate in different processes, including chromatin organization, gene expression, and nuclear envelope biogenesis. In this study, we identify a robust genetic interaction between transcription export (TREX) factors and yeast Src1, an integral inner nuclear membrane protein(More)
During wine fermentation yeasts quickly reach a stationary phase, where cells are metabolically active by consuming sugars present in grape must. It is, consequently, of great interest at this stage to identify suitable gene promoters that may be used to induce the expression of genes with enological applications. With this aim, we have studied a group of(More)