Learn More
The Comprehensive Yeast Genome Database (CYGD) compiles a comprehensive data resource for information on the cellular functions of the yeast Saccharomyces cerevisiae and related species, chosen as the best understood model organism for eukaryotes. The database serves as a common resource generated by a European consortium, going beyond the provision of(More)
Most studies of eukaryotic gene regulation have been done looking at mature mRNA levels. Nevertheless, the steady-state mRNA level is the result of two opposing factors: transcription rate (TR) and mRNA degradation. Both can be important points to regulate gene expression. Here we show a new method that combines the use of nylon macroarrays and in vivo(More)
Inner nuclear membrane proteins containing a LEM (LAP2, emerin, and MAN1) domain participate in different processes, including chromatin organization, gene expression, and nuclear envelope biogenesis. In this study, we identify a robust genetic interaction between transcription export (TREX) factors and yeast Src1, an integral inner nuclear membrane protein(More)
Maintaining proper mRNA levels is a key aspect in the regulation of gene expression. The balance between mRNA synthesis and decay determines these levels. We demonstrate that most yeast mRNAs are degraded by the cytoplasmic 5'-to-3' pathway (the "decaysome"), as proposed previously. Unexpectedly, the level of these mRNAs is highly robust to perturbations in(More)
As an adaptive response to new conditions, mRNA concentrations in eukaryotes are readjusted after any environmental change. Although mRNA concentrations can be modified by altering synthesis and/or degradation rates, the rapidity of the transition to a new concentration depends on the regulation of mRNA stability. There are several plausible transcriptional(More)
The amount of mRNA in a cell is the result of two opposite reactions: transcription and mRNA degradation. These reactions are governed by kinetics laws, and the most regulated step for many genes is the transcription rate. The transcription rate, which is assumed to be exercised mainly at the RNA polymerase recruitment level, can be calculated using the RNA(More)
BACKGROUND Gene expression is a two-step synthesis process that ends with the necessary amount of each protein required to perform its function. Since the protein is the final product, the main focus of gene regulation should be centered on it. However, because mRNA is an intermediate step and the amounts of both mRNA and protein are controlled by their(More)
BACKGROUND Specific histone modifications can perform several cellular functions, for example, as signals to recruit trans-acting factors and as modulators of chromatin structure. Acetylation of Lys14 of histone H3 is the main target of many histone acetyltransferases in vitro and may play a central role in the stability of the nucleosome. This study is(More)
Gene expression profiles of a wine strain of Saccharomyces cerevisiae PYCC4072 were monitored during alcoholic fermentations with three different nitrogen supplies: (i) control fermentation (with enough nitrogen to complete sugar fermentation), (ii) nitrogen-limiting fermentation, and (iii) the addition of nitrogen to the nitrogen-limiting fermentation(More)
Most studies on eukaryotic gene regulation have focused on mature mRNA levels. Nevertheless, the steady-state mRNA level is the result of two opposing biological processes: transcription and degradation, both of which can be important points to regulate gene expression. It is now possible to determine the transcription and degradation rates (TR and DR), as(More)