José David Martín-Guerrero

Learn More
— In this paper, we propose the use of Support Vector Machines (SVM) for automatic hyperspectral data classification and knowledge discovery. In the first stage of the study, we use SVMs for crop classification and analyze their performance in terms of efficiency and robustness, as compared to extensively used neural and fuzzy methods. Efficiency is(More)
BACKGROUND This paper presents the use of Support Vector Machines (SVMs) for prediction and analysis of antisense oligonucleotide (AO) efficacy. The collected database comprises 315 AO molecules including 68 features each, inducing a problem well-suited to SVMs. The task of feature selection is crucial given the presence of noisy or redundant features, and(More)
Data of different levels of complexity and of ever growing diversity of characteristics are the raw materials that machine learning practitioners try to model using their wide palette of methods and tools. The obtained models are meant to be a synthetic representation of the available, observed data that captures some of their intrinsic regularities or(More)
The theory of extreme learning machine (ELM) has become very popular on the last few years. ELM is a new approach for learning the parameters of the hidden layers of a multilayer neural network (as the multilayer perceptron or the radial basis function neural network). Its main advantage is the lower computational cost, which is especially relevant when(More)
The external administration of recombinant human erythropoietin is the chosen treatment for those patients with secondary anemia due to chronic renal failure in periodic hemodialysis. The objective of this paper is to carry out an individualized prediction of the EPO dosage to be administered to those patients. The high cost of this medication, its(More)
This paper proposes the use of neural networks for individualizing the dosage of cyclosporine A (CyA) in patients who have undergone kidney transplantation. Since the dosing of CyA usually requires intensive therapeutic drug monitoring, the accurate prediction of CyA blood concentrations would decrease the monitoring frequency and, thus, improve clinical(More)
This paper presents a methodology to estimate the future success of a collaborative recommender in a citizen web portal. This methodology consists of four stages, three of them are developed in this study. First of all, a user model, which takes into account some usual characteristics of web data, is developed to produce artificial data sets. These data(More)