José D Rojas

Learn More
The SLC4A10 gene product, commonly known as NCBE, is highly expressed in rodent brain and has been characterized by others as a Na(+)-driven Cl-HCO(3) exchanger. However, some of the earlier data are not consistent with Na(+)-driven Cl-HCO(3) exchange activity. In the present study, northern blot analysis showed that, also in humans, NCBE transcripts are(More)
NCBE (SLC4A10) is a member of the SLC4 family of bicarbonate transporters, several of which play important roles in intracellular-pH regulation and transepithelial HCO(3)(-) transport. Here we characterize a new antibody that was generated in rabbit against a fusion protein consisting of maltose-binding protein and the first 135 amino acids (aa) of the(More)
Endothelial cells (EC) from diabetic BioBreeding (BB) rats have an impaired ability to produce NO. This deficiency is not due to a defect in the constitutive isoform of NO synthase in EC (ecNOS) or alterations in intracellular calcium, calmodulin, NADPH or arginine levels. Instead, ecNOS cannot produce sufficient NO because of a deficiency in(More)
The electrogenic Na(+)-HCO(3)(-) cotransporter NBCe1 is important for the regulation of intracellular pH (pH(i)) and for epithelial HCO(3)(-) transport in many tissues, including kidney, pancreas, and brain. In the present study, we investigate glycosylation sites in NBCe1. Treatment of rat kidney membrane extracts with peptide N-glycosidase F (PNGase F)(More)
Microvascular endothelial cells involved in angiogenesis are exposed to an acidic environment that is not conducive for growth and survival. These cells must exhibit a dynamic intracellular (cytosolic) pH (pHcyt) regulatory mechanism to cope with acidosis, in addition to the ubiquitous Na+/H+ exchanger and HCO3--based H+-transporting systems. We hypothesize(More)
Angiogenesis requires invasion of extracellular matrix (ECM) proteins by endothelial cells and occurs in hypoxic and acidic environments that are not conducive for cell growth and survival. We hypothesize that angiogenic cells must exhibit a unique system to regulate their cytosolic pH in order to cope with these harsh conditions. The plasmalemmal vacuolar(More)
The lung endothelium layer is exposed to continuous CO(2) transit which exposes the endothelium to a substantial acid load that could be detrimental to cell function. The Na(+)/H(+) exchanger and HCO(3)(-)-dependent H(+)-transporting mechanisms regulate intracellular pH (pH(cyt)) in most cells. Cells that cope with high acid loads might require additional(More)
Amiloride derivatives are commonly used inhibitors of Na+/H+- and Na+/Ca2+-exchange. Because they are fluorescent molecules the use of benzylamiloride (BZA), an inhibitor of Na+/Ca2+ exchange, in conjunction with Fura-2, a commonly used fluorescent Ca2+ indicator, might complicate interpretation of fluorescence data obtained. In vitro data show that BZA(More)
  • 1