José Carlos M Mombach

Learn More
Apoptosis is essential for complex multicellular organisms and its failure is associated with genome instability and cancer. Interactions between apoptosis and genome-maintenance mechanisms have been extensively documented and include transactivation-independent and -dependent functions, in which the tumor-suppressor protein p53 works as a 'molecular node'(More)
Understanding the architecture of physiological functions from annotated genome sequences is a major task for postgenomic biology. From the annotated genome sequence of the microbe Escherichia coli, we propose a general quantitative definition of enzyme importance in a metabolic network. Using a graph analysis of its metabolism, we relate the extent of the(More)
UNLABELLED ViaComplex is an open-source application that builds landscape maps of gene expression networks. The motivation for this software comes from two previous publications (Nucleic Acids Res., 35, 1859-1867, 2007; Nucleic Acids Res., 36, 6269-6283, 2008). The first article presents a network-based model of genome stability pathways where we defined a(More)
Understanding biochemical pathways is one of the biggest challenges in the field of molecular biology nowadays. Computer science can contribute in this area by providing formalisms and tools to simulate and analyse pathways. One formalism that is suited for modelling concurrent systems is Milner's Calculus of Communicating Systems (CCS). This paper shows(More)
In this work we apply a bioinformatics approach to determine the most important enzymes of the metabolic network of mycoplasmas. The genomes of several mycoplasmas shared predicted important enzymes. Our method allows us to determine both enzymes that are isolated from the metabolic network of the organism and those that are redundant. We also compare the(More)
Understanding biochemical pathways is one of the big challenges of the field of molecular biology nowadays. Computer science can contribute in this area in a variety of ways. One of them is providing formalisms and tools to simulate and check properties of pathways. One formalism that is well known and suited for modeling concurrent and distributed systems(More)
We investigate the influence of cellular adhesion on the morphology of the interface between a tissue of proliferating and quiescent cells using the cellular Potts model. We show that a decrease in surface tension changes the morphology of the interface and that only for negative surface tensions cell detachment from the proliferative tissue occurs(More)
The lattice cellular Potts model is widely used to represent physical and biological cellular systems. Standard implementations of this model in the literature employ inefficient Monte Carlo protocols to select elements (labels) of the lattice storing the investigated system. Recently, we proposed a new parallel algorithm, the Random Walker algorithm (RW),(More)
A recent model proposing that a barrier is raised against tumor evolution in pre-cancer tissues is investigated. For that we quantify expression alterations in genome maintenance pathways: DNA damage response, death pathways and cell cycle and also differentially expressed genes in transcriptomes of pre-cancerous and cancerous lesions deposited in the GEO(More)