José‐Carlos Fernández‐Morales

Learn More
Chondroitin sulfate (CS) proteoglycans (CSPGs) are the most abundant PGs of the brain extracellular matrix (ECM). Free CS could be released during ECM degradation and exert physiological functions; thus, we aimed to investigate the effects of CS on voltage- and current-clamped rat embryo hippocampal neurons in primary cultures. We found that CS elicited a(More)
For the last two decades, most efforts on new drug development to treat Alzheimer's disease have been focused to inhibit the synthesis of amyloid beta (Aβ), to prevent Aβ deposition, or to clear up Aβ plaques from the brain of Alzheimer's disease (AD) patients. Other pathogenic mechanisms such as the hyperphosphorylation of the microtubular tau protein(More)
The activity of the plasmalemmal Na(+)/Ca(2+) exchanger (NCX) is highly sensitive to temperature. We took advantage of this fact to explore here the effects of the NCX blocker KB-R7943 (KBR) at 22 and 37°C on the kinetics of Ca(2+) currents (ICa), cytosolic Ca(2+) ([Ca(2+)]c) transients, and catecholamine release from bovine chromaffin cells (BCCs)(More)
At early life, the adrenal chromaffin cells respond with a catecholamine surge under hypoxic conditions. This response depends on Ca(2+) entry through voltage-activated calcium channels (VACCs). We have investigated here three unresolved questions that concern this response in rat embryo chromaffin cells (ECCs): 1) the relative contribution of L (α1D,(More)
From experiments performed at room temperature, we know that the buffering of Ca(2+) by mitochondria contributes to the shaping of the bulk cytosolic calcium transient ([Ca(2+)]c) and secretion transients of chromaffin cells stimulated with depolarizing pulses. We also know that the mitochondrial Ca(2+) transporters and the release of catecholamine are(More)
Here we review the contribution of the various subtypes of voltage-activated calcium channels (VACCs) to the regulation of catecholamine release from chromaffin cells (CCs) at early life. Patch-clamp recording of inward currents through VACCs has revealed the expression of high-threshold VACCs (high-VACCs) of the L, N, and PQ subtypes in rat embryo CCs and(More)
Altered synaptic transmission with excess glutamate release has been implicated in the loss of motoneurons occurring in amyotrophic lateral sclerosis (ALS). Hyperexcitability or hypoexcitability of motoneurons from mice carrying the ALS mutation SOD1(G93A) (mSOD1) has also been reported. Here we have investigated the excitability, the ion currents, and the(More)
  • 1