Learn More
Biochemical and genetic evidence suggest that the SWI/SNF complex is involved in the remodeling of chromatin during gene activation. We have used antibodies specific against three human subunits of this complex to study its subnuclear localization, as well as its potential association with active chromatin and the nuclear skeleton. Immunofluorescence(More)
Dynamic regulation of chromatin structure is of fundamental importance for modulating genomic activities in higher eukaryotes. The opposing activities of Polycomb group (PcG) and trithorax group (trxG) proteins are part of a chromatin-based cellular memory system ensuring the correct expression of specific transcriptional programs at defined developmental(More)
CHD8 is a chromatin remodeling ATPase of the SNF2 family. We found that depletion of CHD8 impairs cell proliferation. In order to identify CHD8 target genes, we performed a transcriptomic analysis of CHD8-depleted cells, finding out that CHD8 controls the expression of cyclin E2 (CCNE2) and thymidylate synthetase (TYMS), two genes expressed in the G1/S(More)
The establishment and heritable maintenance of specific epigenetic states that lead to differential gene expression are crucial for cell differentiation and development. Over the past few years, it has become apparent that epigenetic control of transcription is mediated through specific states of the chromatin structure. Therefore, changes in the chromatin(More)
A new glutamine synthetase gene, glnN, which encodes a polypeptide of 724 amino acid residues (M(r), 79,416), has been identified in the unicellular cyanobacterium Synechocystis sp. strain PCC 6803; this is the second gene that encodes a glutamine synthetase (GS) in this cyanobacterium. The functionality of this gene was evidenced by its ability to(More)
It has been previously described that p21 functions not only as a CDK inhibitor but also as a transcriptional co-repressor in some systems. To investigate the roles of p21 in transcriptional control, we studied the gene expression changes in two human cell systems. Using a human leukemia cell line (K562) with inducible p21 expression and human primary(More)
The precise regulation of S-phase-specific genes is critical for cell proliferation. How the repressive chromatin configuration mediated by the retinoblastoma protein and repressor E2F factors changes at the G1/S transition to allow transcription activation is unclear. Here we show ChIP-on-chip studies that reveal that the chromatin remodeller CHD8 binds ∼(More)
BACKGROUND BRAHMA (BRM) is a member of a family of ATPases of the SWI/SNF chromatin remodeling complexes from Arabidopsis. BRM has been previously shown to be crucial for vegetative and reproductive development. METHODOLOGY/PRINCIPAL FINDINGS Here we carry out a detailed analysis of the flowering phenotype of brm mutant plants which reveals that, in(More)
The unicellular cyanobacterium Synechocystis sp. strain PCC 6803 has two putative pathways for ammonium assimilation: the glutamine synthetase-glutamate synthase cycle, which is the main one and is finely regulated by the nitrogen source; and a high NADP-dependent glutamate dehydrogenase activity (NADP-GDH) whose contribution to glutamate synthesis is(More)
Chromatin distribution is not uniform along the human genome. In most genes there is a promoter-associated nucleosome free region (NFR) followed by an array of nucleosomes towards the gene body in which the first (+1) nucleosome is strongly positioned. The function of this characteristic chromatin distribution in transcription is not fully understood. Here(More)