José C Gómez-Tamayo

Learn More
Seven-transmembrane receptors (7TMRs) mediate the majority of physiological responses to hormones and neurotransmitters in higher organisms. Tertiary structure stability and activation of these versatile membrane proteins require formation or disruption of complex networks of well-recognized interactions (such as H-bonds, ionic, or aromatic-aromatic) but(More)
A set of regioisomeric pairs of tricyclic hydroquinones, analogues of antitumor 9,10-dihydroxy-4,4-dimethyl-5,8-dihydroanthracen-1(4H)-one (1) and other derivatives, were synthesized and their regiochemistry and NMR spectra assigned by using (1)H-detected one-bond (C-H) HMQC and long-range C-H HMBC, in good agreement with theoretical O3LYP/Alhrichs-pVTZ(More)
The interactions of Met and Cys with other amino acid side chains have received little attention, in contrast to aromatic-aromatic, aromatic-aliphatic or/and aliphatic-aliphatic interactions. Precisely, these are the only amino acids that contain a sulfur atom, which is highly polarizable and, thus, likely to participate in strong Van der Waals(More)
The finding that ergotamine binds serotonin receptors in a less conserved extended binding pocket close to the extracellular entrance, in addition to the orthosteric site, allowed us to obtain 5-HT7R antagonist 6 endowed with high affinity (Ki=0.7 nM) and significant 5-HT1AR selectivity (ratio>1428). Compound 6 exhibits in vivo antidepressant-like effect (1(More)
Systematic halogenation of two native opioid peptides has shown that halogen atoms can modulate peptide-receptor interactions in different manners. First, halogens may produce a steric hindrance that reduces the binding of the peptide to the receptor. Second, chlorine, bromine, or iodine may improve peptide binding if their positive σ-hole forms a halogen(More)
  • 1