Learn More
In Drosophila, the development of the compound eye depends on the movement of a morphogenetic furrow (MF) from the posterior (P) to the anterior (A) of the eye imaginal disc. We define several subdomains along the A-P axis of the eye disc that express distinct combinations of transcription factors. One subdomain, anterior to the MF, expresses two homeobox(More)
The identification and characterization of the regulatory activity of genomic sequences is crucial for understanding how the information contained in genomes is translated into cellular function. The cis-regulatory sequences control when, where, and how much genes are transcribed and can activate (enhancers) or repress (silencers) gene expression. Here, we(More)
During eye development, retinal progenitors are drawn from a multipotent, proliferative cell population. In Drosophila the maintenance of this cell population requires the function of the TALE-homeodomain transcription factor Hth, although its mechanisms of action are still unknown. Here we investigate whether members of the Meis gene family, the vertebrate(More)
Phenotypic evolution in animals is thought to be driven in large part by differences in gene expression patterns, which can result from sequence changes in cis- regulatory elements (cis- changes) or from changes in the expression pattern or function of transcription factors (trans- changes). While isolated examples of trans- changes have been identified,(More)
The genomic regulatory programmes that underlie human organogenesis are poorly understood. Pancreas development, in particular, has pivotal implications for pancreatic regeneration, cancer and diabetes. We have now characterized the regulatory landscape of embryonic multipotent progenitor cells that give rise to all pancreatic epithelial lineages. Using(More)
In Drosophila, the eye primordium is specified as a subdomain of the larval eye disc. Here, we show that the Zn-finger transcription factor teashirt (tsh) marks the region of the early eye disc where the eye primordium will form. Moreover, tsh misexpression directs eye primordium formation in disc regions normally destined to form head capsule, something(More)
Although many of the factors responsible for conferring identity to the eye field in Drosophila have been identified, much less is known about how the expression of the retinal ;trigger', the signaling molecule Hedgehog, is controlled. Here, we show that the co-expression of the conserved odd-skipped family genes at the posterior margin of the eye field is(More)
Genome-wide association studies (GWAS) identified the MEIS1 locus for Restless Legs Syndrome (RLS), but causal single nucleotide polymorphisms (SNPs) and their functional relevance remain unknown. This locus contains a large number of highly conserved noncoding regions (HCNRs) potentially functioning as cis-regulatory modules. We analyzed these HCNRs for(More)
Meis1, a conserved transcription factor of the TALE-homeodomain class, is expressed in a wide variety of tissues during development. Its complex expression pattern is likely to be controlled by an equally complex regulatory landscape. Here we have scanned the Meis1 locus for regulatory elements and found 13 non-coding regions, highly conserved between(More)
The development of organs composed by repeated functional units is, in many cases, accomplished by the transition of cells from a progenitor to a differentiation domain, triggering a reiterated developmental program. Yet, how these discrete fields are formed during development is still a largely unresolved question. The posterior lateral line (pLL), a(More)