José Antonio Prieto

Learn More
The molecular mechanisms that enable yeast cells to detect and transmit cold signals and their physiological significance in the adaptive response to low temperatures are unknown. Here, we have demonstrated that the MAPK Hog1p is specifically activated in response to cold. Phosphorylation of Hog1p was dependent on Pbs2p, the MAPK kinase (MAPKK) of the high(More)
The enzyme aldose reductase plays an important role in the osmo-protection mechanism of diverse organisms. Here, we show that yeast aldose reductase is encoded by the GRE3 gene. Expression of GRE3 is carbon-source independent and up-regulated by different stress conditions, such as NaCl, H2O2, 39 °C and carbon starvation. Measurements of enzyme activity and(More)
Methylglyoxal (MG), a glycolytic by-product, is an extremely toxic compound. This fact suggests that its synthesis and degradation should be tightly controlled. However, little is known about the mechanisms that protect yeast cells against MG toxicity. Here, we show that in Saccharomyces cerevisiae, MG exposure increased the internal MG content and(More)
The response of yeast cells to sudden temperature downshifts has received little attention compared with other stress conditions. Like other organisms, both prokaryotes and eukaryotes, in Saccharomyces cerevisiae a decrease in temperature induces the expression of many genes involved in transcription and translation, some of which display a cold-sensitivity(More)
Accumulation of unfolded proteins in the endoplasmic reticulum (ER) triggers the so-called unfolded protein response (UPR), a conserved signaling pathway that drives the transcription of genes such as chaperones and folding enzymes. Nevertheless, the activity of the UPR accounts only for a part of the gene expression program activated upon ER stress.(More)
Evaluation of gene expression in baker's yeast requires the extraction and collection of pure samples of RNA. However, in bread dough this task is difficult due to the complex composition of the system. We found that a liquid model system can be used to analyze the transcriptional response of industrial strains in dough with a high sugar content. The(More)
Unsaturated fatty acids play an essential role in the biophysical characteristics of cell membranes and determine the proper function of membrane-attached proteins. Thus, the ability of cells to alter the degree of unsaturation in their membranes is an important factor in cellular acclimatization to environmental conditions. Many eukaryotic organisms can(More)
A sudden overaccumulation of methylglyoxal (MG) induces, in Saccharomyces cerevisiae, the expression of MG-protective genes, including GPD1, GLO1 and GRE3. The response is partially dependent on the transcriptional factors Msn2p/Msn4p, but unrelated with the general stress response mechanism. Here, we show that the high-osmolarity glycerol (HOG)-pathway(More)
Yeasts rarely encounter ideal physiological conditions during their industrial life span; therefore, their ability to adapt to changing conditions determines their usefulness and applicability. This is especially true for baking strains of Saccharomyces cerevisiae. The success of this yeast in the ancient art of bread making is based on its capacity to(More)
Recent years have shown a huge growth in the market of industrial baker's yeasts (Saccharomyces cerevisiae), with the need for strains affording better performance in prefrozen dough. Evidence suggests that during the freezing process, cells can suffer biochemical damage caused by osmotic stress. Nevertheless, the involvement of ion-responsive(More)