José Antonio Lozano

Learn More
The portfolio optimization problem uses mathematical approaches to model stock exchange investments. Its aim is to find an optimal set of assets to invest on, as well as the optimal investments for each asset. In the present work, the problem is treated as a multi-objective optimization problem. Three well-known optimization techniques greedy search,(More)
Estimation of distribution algorithms (EDAs) that use marginal product model factorizations have been widely applied to a broad range of mainly binary optimization problems. In this paper, we introduce the affinity propagation EDA (AffEDA) which learns a marginal product model by clustering a matrix of mutual information learned from the data using a very(More)
In this paper, we aim to compare empirically four initialization methods for the K-Means algorithm: random, Forgy, MacQueen and Kaufman. Although this algorithm is known for its robustness, it is widely reported in literature that its performance depends upon two key points: initial clustering and instance order. We conduct a series of experiments to draw(More)
This article reviews machine learning methods for bioinformatics. It presents modelling methods, such as supervised classification, clustering and probabilistic graphical models for knowledge discovery, as well as deterministic and stochastic heuristics for optimization. Applications in genomics, proteomics, systems biology, evolution and text mining are(More)
Differences in gene expression patterns have been documented not only in Multiple Sclerosis patients versus healthy controls but also in the relapse of the disease. Recently a new gene expression modulator has been identified: the microRNA or miRNA. The aim of this work is to analyze the possible role of miRNAs in multiple sclerosis, focusing on the relapse(More)
In the machine learning field, the performance of a classifier is usually measured in terms of prediction error. In most real-world problems, the error cannot be exactly calculated and it must be estimated. Therefore, it is important to choose an appropriate estimator of the error. This paper analyzes the statistical properties, bias and variance, of the(More)
—Simplified lattice models have played an important role in protein structure prediction and protein folding problems. These models can be useful for an initial approximation of the protein structure, and for the investigation of the dynamics that govern the protein folding process. Estimation of distribution algorithms (EDAs) are efficient evolutionary(More)