Jorunn Erla Eyfjord

Learn More
Germline mutations in BRCA1 and BRCA2 confer high risks of breast and ovarian cancer, but the average magnitude of these risks is uncertain and may depend on the context. Estimates based on multiple-case families may be enriched for mutations of higher risk and/or other familial risk factors, whereas risk estimates from studies based on cases unselected for(More)
The contribution of BRCA1 and BRCA2 to inherited breast cancer was assessed by linkage and mutation analysis in 237 families, each with at least four cases of breast cancer, collected by the Breast Cancer Linkage Consortium. Families were included without regard to the occurrence of ovarian or other cancers. Overall, disease was linked to BRCA1 in an(More)
Multiple genetic loci confer susceptibility to breast and ovarian cancers. We have previously developed a model (BOADICEA) under which susceptibility to breast cancer is explained by mutations in BRCA1 and BRCA2, as well as by the joint multiplicative effects of many genes (polygenic component). We have now updated BOADICEA using additional family data from(More)
To investigate the clinical value of somatic TP53 mutations in breast cancer, we assembled clinical and molecular data on 1,794 women with primary breast cancer with long-term follow-up and whose tumor has been screened for mutation in exons 5 to 8 of TP53 by gene sequencing. TP53 mutations were more frequent in tumors of ductal and medullar types,(More)
Breast carcinoma is the most common malignancy among women in developed countries. Because family history remains the strongest single predictor of breast cancer risk, attention has focused on the role of highly penetrant, dominantly inherited genes in cancer-prone kindreds1. BRCA1 was localized to chromosome 17 through analysis of a set of high-risk(More)
We analysed whole-genome sequences of 560 breast cancers to advance understanding of the driver mutations conferring clonal advantage and the mutational processes generating somatic mutations. We found that 93 protein-coding cancer genes carried probable driver mutations. Some non-coding regions exhibited high mutation frequencies, but most have distinctive(More)
BRCA1 or BRCA2 germline mutations increase the risk of developing breast cancer. Tumour cells from germline mutation carriers have frequently lost the wild-type allele. This is predicted to result in genomic instability where cell survival depends upon dysfunctional checkpoint mechanisms. Tumorigenic potential could then be acquired through further genomic(More)
The human DLC-1 (deleted in liver cancer 1) gene was cloned from a primary human hepatocellular carcinoma (HCC) and mapped to the chromosome 8p21–22 region frequently deleted in common human cancers and suspected to harbor tumor suppressor genes. DLC-1 was found to be deleted or downregulated in a significant number of HCCs. We expanded our investigations(More)
The glutathione S-transferase (GST) genes are involved in the metabolism of various carcinogens. Deletion polymorphisms in the GSTM1 and GSTT1 genes and an A-G polymorphism in the GSTP1 gene were investigated in relation to breast cancer risk in 500 breast cancer patients and 395 controls. The effects of the GST genotypes on the frequency and pattern of p53(More)
A recent report estimated the breast cancer risks in carriers of the three Ashkenazi founder mutations to be higher than previously published estimates derived from population based studies. In an attempt to confirm this, the breast and ovarian cancer risks associated with the three Ashkenazi founder mutations were estimated using families included in a(More)