Learn More
We cloned and characterized a 3.3-kb fragment containing the 5'-regulatory region of the human myostatin gene. The promoter sequence contains putative muscle growth response elements for glucocorticoid, androgen, thyroid hormone, myogenic differentiation factor 1, myocyte enhancer factor 2, peroxisome proliferator-activated receptor, and nuclear(More)
Myostatin mutations in mice and cattle are associated with increased muscularity, suggesting that myostatin is a negative regulator of skeletal muscle mass. To test the hypothesis that myostatin inhibits muscle cell growth, we examined the effects of recombinant myostatin in mouse skeletal muscle C2C12 cells. After verification of the expression of cDNA(More)
Testosterone supplementation in men decreases fat mass; however, the mechanisms by which it inhibits fat mass are unknown. We hypothesized that testosterone inhibits adipogenic differentiation of preadipocytes by activation of androgen receptor (AR)/beta-catenin interaction and subsequent translocation of this complex to the nucleus thereby bypassing(More)
Administration of replacement doses of testosterone to healthy hypogonadal men and supraphysiological doses to eugonadal men increases muscle size. To determine whether testosterone-induced increase in muscle size is due to muscle fiber hypertrophy, 61 healthy men, 18-35 yr of age, received monthly injections of a long-acting gonadotropin-releasing hormone(More)
Skeletal muscle wasting is an important public health problem associated with aging, chronic disease, cancer, kidney dialysis, and HIV/AIDS. 1,25-Dihydroxyvitamin D (1,25-D3), the active form of vitamin D, is widely recognized for its regulation of calcium and phosphate homeostasis in relation to bone development and maintenance and for its calcemic effects(More)
The vitamin D receptor (VDR) and its ligand 1,25D play an important role in regulating cell growth and cell fate. We examined the effect of 1,25D on cell morphology, cell proliferation, cell cycle progression and apoptosis on mesenchymal multipotent cells. Multipotent cells were treated with and without 1,25D in a time- and dose-dependent manner. Changes in(More)
The mechanisms by which excessive glucocorticoids cause muscular atrophy remain unclear. We previously demonstrated that dexamethasone increases the expression of myostatin, a negative regulator of skeletal muscle mass, in vitro. In the present study, we tested the hypothesis that dexamethasone-induced muscle loss is associated with increased myostatin(More)
Testosterone supplementation increases skeletal muscle mass and decreases fat mass; however, the underlying mechanisms are unknown. We hypothesized that testosterone regulates body composition by promoting the commitment of mesenchymal pluripotent cells into myogenic lineage and inhibiting their differentiation into adipogenic lineage. Mouse C3H 10T1/2(More)
BACKGROUND Myostatin negatively regulates skeletal muscle growth. Myostatin knockout mice exhibit muscle hypertrophy and decreased interstitial fibrosis. We investigated whether a plasmid expressing a short hairpin interfering RNA (shRNA) against myostatin and transduced using electroporation would increase local skeletal muscle mass. METHODS Short(More)
Myostatin is a negative regulator of skeletal muscle growth. We have previously reported that recombinant myostatin protein inhibits DNA and protein synthesis in C2C12 cells. Our objective was to assess if C2C12 cells express myostatin, determine its sub-cellular localization and the developmental stage of C2C12 cells in which myostatin mRNA and protein are(More)