Jorge Mauricio Reyes-Ruiz

Learn More
The cholinergic and glutamatergic neurotransmission systems are known to be severely disrupted in Alzheimer's disease (AD). GABAergic neurotransmission, in contrast, is generally thought to be well preserved. Evidence from animal models and human postmortem tissue suggest GABAergic remodeling in the AD brain. Nevertheless, there is no information on(More)
It is known that Alzheimer's disease (AD) is a synaptic disease that involves various neurotransmitter systems, particularly those where synaptic transmission is mediated by acetylcholine or glutamate (Glu). Nevertheless, very little is known about the properties of neurotransmitter receptors of the AD human brain. We have shown previously that cell(More)
Autism is a complex disorder that arises from the pervasive action of genetic and epigenetic factors that alter synaptic connectivity of the brain. Although GABA and glutamate receptors seem to be two of those factors, very little is known about the functional properties of the autistic receptors. Autistic tissue samples stored in brain banks usually have(More)
Anatomical visualization of neurotransmitter receptor localization is facilitated by tagging receptors, but this process can alter their functional properties. We have evaluated the distribution and properties of WT glutamate receptor 3 (GluR3) alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptors (WT GluR3) and two receptors in which(More)
The Cys-loop family of receptors mediates synaptic neurotransmission in the central nervous system of vertebrates. These receptors share several structural characteristics and assemble in the plasma membrane as multimers with fivefold symmetry. Of these, the ionotropic GABA receptors are key players in the pathogenesis of diseases like epilepsy, anxiety,(More)
Cell membranes, carrying neurotransmitter receptors and ion channels, can be 'microtransplanted' into frog oocytes. This technique allows a direct functional characterization of the original membrane proteins, together with any associated molecules they may have, still embedded in their natural lipid environment. This approach has been previously(More)
GABArho1 receptors are formed by homopentameric assemblies that gate a chloride ion-channel upon activation by the neurotransmitter. Very little is known about the structural and functional roles played by the different domains that form each subunit; but one of them, the fourth transmembrane segment (TM4), is known to form a hydrophobic bundle together(More)
Kaitocephalin is the first discovered natural toxin with protective properties against excitotoxic-death of cultured neurons induced by N-methyl-d-aspartate (NMDA) or alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA)/kainic acid (kainate, KA) receptors. Nevertheless, the effects of kaitocephalin on the function of these receptors were(More)
ETHNOPHARMACOLOGICAL RELEVANCE Withania somnifera (WS) has been traditionally used in Ayurvedic medicine as a remedy for debility, stress, nervous exhaustion, insomnia, loss of memory, and to enhance cognitive function. This study provides an empirical evidence to support the traditional use of WS to aid in mental process engaging GABAergic signaling. AIM(More)