Jorge Lobo-Checa

Learn More
The trapping of single molecules on surfaces without the formation of strong covalent bonds is a prerequisite for molecular recognition and the exploitation of molecular function. On nanopatterned surfaces, molecules may be selectively trapped and addressed. In a boron nitride nanomesh formed on Rh(111), the pattern consisted of holes 2 nanometers in(More)
The structural chemistry and reactivity of 1,3,8,10-tetraazaperopyrene (TAPP) on Cu(111) under ultra-high-vacuum (UHV) conditions has been studied by a combination of experimental techniques (scanning tunneling microscopy (STM) and X-ray photoelectron spectroscopy, XPS) and DFT calculations. Depending on the deposition conditions, TAPP forms three main(More)
The self-assembly of three porphyrin derivatives was studied in detail on a Cu(111) substrate by means of scanning tunneling microscopy (STM). All derivatives have two 4-cyanophenyl substituents in diagonally opposed meso-positions of the porphyrin core, but differ in the nature of the other two meso-alkoxyphenyl substituents. At coverages below 0.8(More)
A novel approach of identifying metal atoms within a metal-organic surface coordination network using scanning tunnelling microscopy (STM) is presented. The Cu adatoms coordinated in the porous surface network of 1,3,8,10-tetraazaperopyrene (TAPP) molecules on a Cu(111) surface give rise to a characteristic electronic resonance in STM experiments. Using(More)
The tunable properties of molecular materials place them among the favorites for a variety of future generation devices. In addition, to maintain the current trend of miniaturization of those devices, a departure from the present top-down production methods may soon be required and self-assembly appears among the most promising alternatives. On-surface(More)
A Rashba-type spin-orbit splitting is found for quantum well states formed in ultrathin Pb films on Si (111). The resulting momentum splitting is comparable to what is found for semiconductor heterostructures. The splitting shows no coverage dependency and the sign of the spin polarization is reversed compared to Rashba splitting in the Au(111) surface(More)
The (114) surface of the semimetal Bi is found to support a quasi-one-dimensional, metallic surface state. As required by symmetry, the state is degenerate along the Gamma-Y line of the surface Brillouin zone with a highest binding energy of approximately 150 meV. In the Gamma-X direction the degeneracy is lifted by the strong spin-orbit splitting in Bi, as(More)
The properties of crystalline solids can to a large extent be derived from the scale and dimensionality of periodic arrays of coupled quantum systems such as atoms and molecules. Periodic quantum confinement in two dimensions has been elusive on surfaces, mainly because of the challenge to produce regular nanopatterned structures that can trap electronic(More)
The influence of structural defects, in the form of step lattices, on the spin polarization of the spin-orbit split Shockley surface state of Au(111) has been investigated. Spin- and angle-resolved photoemission data from three vicinal surfaces with different step densities are presented. The spin splitting is preserved in all three cases, and there is no(More)
The photoemission cross-section of the Shockley surface state of Au(111) is studied over a wide range of photon energies both experimentally and theoretically. The measurements are fully understood based on the theoretical analysis within a one-step ab initio theory of photoemission. The constant initial state spectrum is shown to be very sensitive to the(More)