Learn More
In this paper, a new procedure is presented which allows the estimation of the states and parameters of the hemodynamic approach from blood oxygenation level dependent (BOLD) responses. The proposed method constitutes an alternative to the recently proposed Friston [Neuroimage 16 (2002) 513] method and has some advantages over it. The procedure is based on(More)
Microelectrode arrays used to record local field potentials from the brain are being built with increasingly more spatial resolution, ranging from the initially developed laminar arrays to those with planar and three-dimensional (3D) formats. In parallel with such development in recording techniques, current source density (CSD) analyses have recently been(More)
The most significant progresses in the understanding of human brain functions have been possible due to the use of functional magnetic resonance imaging (fMRI), which when used in combination with other standard neuroimaging techniques (i.e., EEG) provides researchers with a potential tool to elucidate many biophysical principles, established previously by(More)
For about six decades, primary current sources of the electroencephalogram (EEG) have been assumed dipolar in nature. In this study, we used electrophysiological recordings from anesthetized Wistar rats undergoing repeated whisker deflections to revise the biophysical foundations of the EEG dipolar model. In a first experiment, we performed(More)
OBJECTIVE We present a new method of effectively removing imaging artifacts of electroencephalography (EEG) and extensively conserving the time-frequency features of EEG signals during simultaneous functional magnetic resonance imaging (fMRI) scanning under conventional conditions. METHODS Under the conventional conditions of a 5000 Hz EEG sampling rate,(More)
In this study, we investigated two aspects of verb processing: first, whether verbs are processed differently from nouns; and second, how verbal morphology is processed. For this purpose, we used functional magnetic resonance imaging to compare three types of lexical processing in Japanese: the processing of nouns, unmarked active verbs, and inflected(More)
The well-known neural mass model described by Lopes da Silva et al. (1976) and Zetterberg et al. (1978) is fitted to actual EEG data. This is achieved by reformulating the original set of integral equations as a continuous-discrete state space model. The local linearization approach is then used to discretize the state equation and to construct a nonlinear(More)
Here we present a detailed biophysical model of how brain electrical and vascular dynamics are generated within a basic cortical unit. The model was obtained from coupling a canonical neuronal mass and an expandable vasculature. In this proposal, we address several aspects related to electroencephalographic and functional magnetic resonance imaging data(More)
In the companion article a local electrovascular coupling (LEVC) model was proposed to explain the continuous dynamics of electrical and vascular states within a cortical unit. These states produce certain mesoscopic reflections whose discrete time series can be reconstructed from electroencephalography (EEG) and functional magnetic resonance imaging(More)
It has been well recognized that the nonlinear hemodynamic responses of the blood oxygenation level-dependent (BOLD) functional MRI (fMRI) are important and ubiquitous in a series of experimental paradigms, especially for the event-related fMRI. Although this phenomenon has been intensively studied and it has been found that the post-capillary venous(More)