Jorge Gómez-Ariza

Learn More
BACKGROUND Rice (Oryza sativa) and Arabidopsis thaliana have been widely used as model systems to understand how plants control flowering time in response to photoperiod and cold exposure. Extensive research has resulted in the isolation of several regulatory genes involved in flowering and for them to be organized into a molecular network responsive to(More)
The capacity to discriminate variations in day length allows plants to align flowering with the most favourable season of the year. This capacity has been altered by artificial selection when cultivated varieties became adapted to environments different from those of initial domestication. Rice flowering is promoted by short days when HEADING DATE 1 (Hd1)(More)
Rice flowering is controlled by changes in the photoperiod that promote the transition to the reproductive phase as days become shorter. Natural genetic variation for flowering time has been largely documented and has been instrumental to define the genetics of the photoperiodic pathway, as well as providing valuable material for artificial selection of(More)
Flowering is the result of the coordination between genetic information and environmental cues. Gene regulatory networks have evolved in plants in order to measure diurnal and seasonal variation of day length (or photoperiod), thus aligning the reproductive phase with the most favorable season of the year. The capacity of plants to discriminate distinct(More)
  • 1