Jorge Cadena Iñiguez

Learn More
The technological appeal of multiferroics is the ability to control magnetism with electric field. For devices to be useful, such control must be achieved at room temperature. The only single-phase multiferroic material exhibiting unambiguous magnetoelectric coupling at room temperature is BiFeO3 (refs 4 and 5). Its weak ferromagnetism arises from the(More)
The wide spectrum of exotic properties exhibited by transition-metal oxides stems from the complex competition between several quantum interactions. The capacity to select the emergence of specific phases at will is nowadays extensively recognized as key for the design of diverse new devices with tailored functionalities. In this context, interface(More)
A single component molecular conductor has been isolated from electrocrystallization of the monoanionic gold bis(dithiolene) complex based on the N-ethyl-1,3-thiazoline-2-thione-4,5-dithiolate (Et-thiazdt) ligand. The crystal structure of the system exhibits layers built from parallel uniform one-dimensional stacks of the planar molecule. At room(More)
We describe a method for computing the response of an insulator to a static, homogeneous electric field. It consists of iteratively minimizing an electric enthalpy functional expressed in terms of occupied Bloch-like states on a uniform grid of k points. The functional has equivalent local minima below a critical field E(c) that depends inversely on the(More)
Progress in nanotechnology requires new approaches to materials synthesis that make it possible to control material functionality down to the smallest scales. An objective of materials research is to achieve enhanced control over the physical properties of materials such as ferromagnets, ferroelectrics and superconductors. In this context, complex oxides(More)
T. Yildirim,1,* Jorge Íñiguez,2 and S. Ciraci3 1NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA 2Institut de Ciéncia de Materials de Barcelona (CSIC), Campus UAB, 08193 Bellaterra, Barcelona, Spain 3Physics Department, Bilkent University, 06800 Bilkent, Ankara, Turkey Received 3 May 2005;(More)
We present an ab initio study of the BFCO solid solution formed by multiferroics BiFeO(3) (BFO) and BiFeO(3) (BCO). We find that BFCO presents a strongly discontinuous morphotropic transition between BFO-like and BCO-like ferroelectric phases. Further, for all compositions such phases remain (meta)stable and retain well-differentiated properties. Our(More)
We report a first-principles study of a class of (BiScO3)12x-(PbTiO3)x ~BS-PT! alloys recently proposed by Eitel et al. as promising materials for piezoelectric actuator applications. We show that ~i! BS-PT displays very large structural distortions and polarizations at the morphotropic phase boundary ~MPB! ~we obtain a c/a of ;1.05–1.08 and P tet'0.9 C/m(More)
The quest for multiferroic materials with ferroelectric and ferromagnetic properties at room temperature continues to be fuelled by the promise of novel devices. Moreover, being able to tune the electrical polarization and the paramagnetic-to-ferromagnetic transition temperature constitutes another current research direction of fundamental and technological(More)